swinv2-tiny-patch4-window8-256-dmae-humeda-DAV65

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4432
  • Accuracy: 0.9029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1096 1.0 15 1.0206 0.48
0.7949 2.0 30 0.5637 0.8057
0.6305 3.0 45 0.3961 0.8457
0.4475 4.0 60 0.3464 0.8629
0.4342 5.0 75 0.3489 0.8629
0.3843 6.0 90 0.3304 0.8457
0.3059 7.0 105 0.3037 0.88
0.2993 8.0 120 0.3286 0.8686
0.2799 9.0 135 0.4499 0.8457
0.302 10.0 150 0.2965 0.8857
0.2445 11.0 165 0.2569 0.8857
0.2317 12.0 180 0.4269 0.8286
0.2189 13.0 195 0.4250 0.8514
0.2001 14.0 210 0.3725 0.8743
0.1924 15.0 225 0.3042 0.8571
0.1617 16.0 240 0.4525 0.8686
0.131 17.0 255 0.4021 0.8457
0.1491 18.0 270 0.3316 0.8571
0.1576 19.0 285 0.3288 0.8857
0.1189 20.0 300 0.3464 0.88
0.1384 21.0 315 0.3618 0.8857
0.1109 22.0 330 0.3548 0.8914
0.0985 23.0 345 0.3908 0.8857
0.1095 24.0 360 0.4517 0.8743
0.1007 25.0 375 0.5406 0.8743
0.192 26.0 390 0.5257 0.8686
0.093 27.0 405 0.4442 0.8686
0.1337 28.0 420 0.5376 0.8629
0.0737 29.0 435 0.4627 0.8686
0.0932 30.0 450 0.4371 0.8914
0.0638 31.0 465 0.4741 0.8971
0.0796 32.0 480 0.4220 0.88
0.0674 33.0 495 0.4432 0.9029
0.0466 34.0 510 0.4385 0.8914
0.0586 35.0 525 0.4614 0.8971
0.0634 36.0 540 0.4855 0.8857
0.0867 37.0 555 0.4716 0.88
0.0721 38.0 570 0.4353 0.8914
0.0572 39.0 585 0.4443 0.8914
0.0613 40.0 600 0.4655 0.8857
0.0911 41.0 615 0.4462 0.8971
0.0691 42.0 630 0.4922 0.88
0.0767 43.0 645 0.4702 0.8743
0.0763 44.0 660 0.4670 0.8743
0.055 45.0 675 0.4692 0.8686

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV65

Finetuned
(137)
this model