swinv2-tiny-patch4-window8-256-dmae-humeda-DAV65
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4432
- Accuracy: 0.9029
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1096 | 1.0 | 15 | 1.0206 | 0.48 |
0.7949 | 2.0 | 30 | 0.5637 | 0.8057 |
0.6305 | 3.0 | 45 | 0.3961 | 0.8457 |
0.4475 | 4.0 | 60 | 0.3464 | 0.8629 |
0.4342 | 5.0 | 75 | 0.3489 | 0.8629 |
0.3843 | 6.0 | 90 | 0.3304 | 0.8457 |
0.3059 | 7.0 | 105 | 0.3037 | 0.88 |
0.2993 | 8.0 | 120 | 0.3286 | 0.8686 |
0.2799 | 9.0 | 135 | 0.4499 | 0.8457 |
0.302 | 10.0 | 150 | 0.2965 | 0.8857 |
0.2445 | 11.0 | 165 | 0.2569 | 0.8857 |
0.2317 | 12.0 | 180 | 0.4269 | 0.8286 |
0.2189 | 13.0 | 195 | 0.4250 | 0.8514 |
0.2001 | 14.0 | 210 | 0.3725 | 0.8743 |
0.1924 | 15.0 | 225 | 0.3042 | 0.8571 |
0.1617 | 16.0 | 240 | 0.4525 | 0.8686 |
0.131 | 17.0 | 255 | 0.4021 | 0.8457 |
0.1491 | 18.0 | 270 | 0.3316 | 0.8571 |
0.1576 | 19.0 | 285 | 0.3288 | 0.8857 |
0.1189 | 20.0 | 300 | 0.3464 | 0.88 |
0.1384 | 21.0 | 315 | 0.3618 | 0.8857 |
0.1109 | 22.0 | 330 | 0.3548 | 0.8914 |
0.0985 | 23.0 | 345 | 0.3908 | 0.8857 |
0.1095 | 24.0 | 360 | 0.4517 | 0.8743 |
0.1007 | 25.0 | 375 | 0.5406 | 0.8743 |
0.192 | 26.0 | 390 | 0.5257 | 0.8686 |
0.093 | 27.0 | 405 | 0.4442 | 0.8686 |
0.1337 | 28.0 | 420 | 0.5376 | 0.8629 |
0.0737 | 29.0 | 435 | 0.4627 | 0.8686 |
0.0932 | 30.0 | 450 | 0.4371 | 0.8914 |
0.0638 | 31.0 | 465 | 0.4741 | 0.8971 |
0.0796 | 32.0 | 480 | 0.4220 | 0.88 |
0.0674 | 33.0 | 495 | 0.4432 | 0.9029 |
0.0466 | 34.0 | 510 | 0.4385 | 0.8914 |
0.0586 | 35.0 | 525 | 0.4614 | 0.8971 |
0.0634 | 36.0 | 540 | 0.4855 | 0.8857 |
0.0867 | 37.0 | 555 | 0.4716 | 0.88 |
0.0721 | 38.0 | 570 | 0.4353 | 0.8914 |
0.0572 | 39.0 | 585 | 0.4443 | 0.8914 |
0.0613 | 40.0 | 600 | 0.4655 | 0.8857 |
0.0911 | 41.0 | 615 | 0.4462 | 0.8971 |
0.0691 | 42.0 | 630 | 0.4922 | 0.88 |
0.0767 | 43.0 | 645 | 0.4702 | 0.8743 |
0.0763 | 44.0 | 660 | 0.4670 | 0.8743 |
0.055 | 45.0 | 675 | 0.4692 | 0.8686 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV65
Base model
microsoft/swinv2-tiny-patch4-window8-256