|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
PowerMoE-3b - GGUF |
|
- Model creator: https://huggingface.co/ibm/ |
|
- Original model: https://huggingface.co/ibm/PowerMoE-3b/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [PowerMoE-3b.Q2_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q2_K.gguf) | Q2_K | 1.18GB | |
|
| [PowerMoE-3b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.IQ3_XS.gguf) | IQ3_XS | 1.32GB | |
|
| [PowerMoE-3b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.IQ3_S.gguf) | IQ3_S | 1.39GB | |
|
| [PowerMoE-3b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q3_K_S.gguf) | Q3_K_S | 1.39GB | |
|
| [PowerMoE-3b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.IQ3_M.gguf) | IQ3_M | 1.41GB | |
|
| [PowerMoE-3b.Q3_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q3_K.gguf) | Q3_K | 1.53GB | |
|
| [PowerMoE-3b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q3_K_M.gguf) | Q3_K_M | 1.53GB | |
|
| [PowerMoE-3b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q3_K_L.gguf) | Q3_K_L | 1.65GB | |
|
| [PowerMoE-3b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.IQ4_XS.gguf) | IQ4_XS | 1.72GB | |
|
| [PowerMoE-3b.Q4_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q4_0.gguf) | Q4_0 | 1.79GB | |
|
| [PowerMoE-3b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.IQ4_NL.gguf) | IQ4_NL | 1.81GB | |
|
| [PowerMoE-3b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q4_K_S.gguf) | Q4_K_S | 1.81GB | |
|
| [PowerMoE-3b.Q4_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q4_K.gguf) | Q4_K | 1.92GB | |
|
| [PowerMoE-3b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q4_K_M.gguf) | Q4_K_M | 1.92GB | |
|
| [PowerMoE-3b.Q4_1.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q4_1.gguf) | Q4_1 | 1.99GB | |
|
| [PowerMoE-3b.Q5_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q5_0.gguf) | Q5_0 | 2.18GB | |
|
| [PowerMoE-3b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q5_K_S.gguf) | Q5_K_S | 2.18GB | |
|
| [PowerMoE-3b.Q5_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q5_K.gguf) | Q5_K | 2.24GB | |
|
| [PowerMoE-3b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q5_K_M.gguf) | Q5_K_M | 2.24GB | |
|
| [PowerMoE-3b.Q5_1.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q5_1.gguf) | Q5_1 | 2.37GB | |
|
| [PowerMoE-3b.Q6_K.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q6_K.gguf) | Q6_K | 2.59GB | |
|
| [PowerMoE-3b.Q8_0.gguf](https://huggingface.co/RichardErkhov/ibm_-_PowerMoE-3b-gguf/blob/main/PowerMoE-3b.Q8_0.gguf) | Q8_0 | 3.35GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
pipeline_tag: text-generation |
|
inference: false |
|
license: apache-2.0 |
|
library_name: transformers |
|
model-index: |
|
- name: ibm/PowerMoE-3b |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: ARC |
|
metrics: |
|
- name: accuracy-norm |
|
type: accuracy-norm |
|
value: 58.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: BoolQ |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 65.0 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: Hellaswag |
|
metrics: |
|
- name: accuracy-norm |
|
type: accuracy-norm |
|
value: 71.5 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: OpenBookQA |
|
metrics: |
|
- name: accuracy-norm |
|
type: accuracy-norm |
|
value: 41.0 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: PIQA |
|
metrics: |
|
- name: accuracy-norm |
|
type: accuracy-norm |
|
value: 79.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: Winogrande |
|
metrics: |
|
- name: accuracy-norm |
|
type: accuracy-norm |
|
value: 65.0 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: MMLU (5 shot) |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 42.8 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: GSM8k (5 shot) |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 25.9 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: lm-eval-harness |
|
name: math (4 shot) |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 14.8 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode-eval |
|
name: humaneval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 20.1 |
|
verified: false |
|
- task: |
|
type: text-generation |
|
dataset: |
|
type: bigcode-eval |
|
name: MBPP |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 32.4 |
|
verified: false |
|
--- |
|
|
|
## Model Summary |
|
PowerMoE-3B is a 3B sparse Mixture-of-Experts (sMoE) language model trained with the Power learning rate scheduler. It sparsely activates 800M parameters for each token. It is trained on a mix of open-source and proprietary datasets. PowerMoE-3B has shown promising results compared to other dense models with 2x activate parameters across various benchmarks, including natural language multi-choices, code generation, and math reasoning. |
|
Paper: https://arxiv.org/abs/2408.13359 |
|
|
|
## Usage |
|
Note: Requires installing HF transformers from source. |
|
|
|
### Generation |
|
This is a simple example of how to use **PowerMoE-3b** model. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # or "cpu" |
|
model_path = "ibm/PowerMoE-3b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
# drop device_map if running on CPU |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) |
|
model.eval() |
|
# change input text as desired |
|
prompt = "Write a code to find the maximum value in a list of numbers." |
|
# tokenize the text |
|
input_tokens = tokenizer(prompt, return_tensors="pt") |
|
# transfer tokenized inputs to the device |
|
for i in input_tokens: |
|
input_tokens[i] = input_tokens[i].to(device) |
|
# generate output tokens |
|
output = model.generate(**input_tokens, max_new_tokens=100) |
|
# decode output tokens into text |
|
output = tokenizer.batch_decode(output) |
|
# loop over the batch to print, in this example the batch size is 1 |
|
for i in output: |
|
print(i) |
|
``` |
|
|
|
|
|
Additional thanks to @nicoboss for giving me access to his private supercomputer, enabling me to provide many more quants, at much higher speed, than I would otherwise be able to. |