|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
MiniPLM-llama3.1-212M - GGUF |
|
- Model creator: https://huggingface.co/MiniLLM/ |
|
- Original model: https://huggingface.co/MiniLLM/MiniPLM-llama3.1-212M/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [MiniPLM-llama3.1-212M.Q2_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q2_K.gguf) | Q2_K | 0.12GB | |
|
| [MiniPLM-llama3.1-212M.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.IQ3_XS.gguf) | IQ3_XS | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.IQ3_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.IQ3_S.gguf) | IQ3_S | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q3_K_S.gguf) | Q3_K_S | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.IQ3_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.IQ3_M.gguf) | IQ3_M | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.Q3_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q3_K.gguf) | Q3_K | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q3_K_M.gguf) | Q3_K_M | 0.13GB | |
|
| [MiniPLM-llama3.1-212M.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q3_K_L.gguf) | Q3_K_L | 0.14GB | |
|
| [MiniPLM-llama3.1-212M.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.IQ4_XS.gguf) | IQ4_XS | 0.14GB | |
|
| [MiniPLM-llama3.1-212M.Q4_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q4_0.gguf) | Q4_0 | 0.14GB | |
|
| [MiniPLM-llama3.1-212M.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.IQ4_NL.gguf) | IQ4_NL | 0.14GB | |
|
| [MiniPLM-llama3.1-212M.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q4_K_S.gguf) | Q4_K_S | 0.14GB | |
|
| [MiniPLM-llama3.1-212M.Q4_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q4_K.gguf) | Q4_K | 0.15GB | |
|
| [MiniPLM-llama3.1-212M.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q4_K_M.gguf) | Q4_K_M | 0.15GB | |
|
| [MiniPLM-llama3.1-212M.Q4_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q4_1.gguf) | Q4_1 | 0.15GB | |
|
| [MiniPLM-llama3.1-212M.Q5_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q5_0.gguf) | Q5_0 | 0.16GB | |
|
| [MiniPLM-llama3.1-212M.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q5_K_S.gguf) | Q5_K_S | 0.16GB | |
|
| [MiniPLM-llama3.1-212M.Q5_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q5_K.gguf) | Q5_K | 0.16GB | |
|
| [MiniPLM-llama3.1-212M.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q5_K_M.gguf) | Q5_K_M | 0.16GB | |
|
| [MiniPLM-llama3.1-212M.Q5_1.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q5_1.gguf) | Q5_1 | 0.16GB | |
|
| [MiniPLM-llama3.1-212M.Q6_K.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q6_K.gguf) | Q6_K | 0.17GB | |
|
| [MiniPLM-llama3.1-212M.Q8_0.gguf](https://huggingface.co/RichardErkhov/MiniLLM_-_MiniPLM-llama3.1-212M-gguf/blob/main/MiniPLM-llama3.1-212M.Q8_0.gguf) | Q8_0 | 0.22GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
datasets: |
|
- monology/pile-uncopyrighted |
|
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5 |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# MiniPLM-llama3.1-212M |
|
|
|
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM) |
|
|
|
**MiniPLM-llama3.1-212M** is a 212M model with the [LLaMA3.1 achitecture](https://arxiv.org/abs/2407.21783) pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model. |
|
This model shows the flexibility of the MiniPLM framework in conducting knowledge distillation across model families. |
|
|
|
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility. |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000"> |
|
</p> |
|
|
|
## Evaluation |
|
|
|
MiniPLM models achieves better performance given the same computation and scales well across model sizes: |
|
|
|
<p align='left'> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000"> |
|
</p> |
|
|
|
## Baseline Models |
|
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-LLama3.1-130M) |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{miniplm, |
|
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, |
|
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang}, |
|
journal={arXiv preprint arXiv:2410.17215}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|