|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- moe |
|
- fp8 |
|
- vllm |
|
--- |
|
|
|
# Mixtral-8x7B-Instruct-v0.1-FP8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Mixtral-8x7B-Instruct-v0.1 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 3/6/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1). |
|
It achieves an average score of 72.66 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.44. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized, except the MLP routers. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 4 |
|
model_name = "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below with the following command: |
|
|
|
```bash |
|
python quantize.py --model_path mistralai/Mixtral-8x7B-Instruct-v0.1 --quant_path "output_dir" --calib_size 128 |
|
``` |
|
|
|
|
|
```python |
|
import argparse |
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map |
|
import torch |
|
import os |
|
|
|
|
|
def main(): |
|
# Set up command line argument parsing |
|
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') |
|
parser.add_argument('--model_id', type=str, required=True, |
|
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') |
|
parser.add_argument('--save_path', type=str, default='.', |
|
help='Custom path to save the quantized model. If not provided, will use model_name-FP8') |
|
parser.add_argument('--calib_size', type=int, default=256) |
|
args = parser.parse_args() |
|
|
|
device_map = calculate_offload_device_map( |
|
args.model_id, |
|
reserve_for_hessians=False, |
|
num_gpus=torch.cuda.device_count(), |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_id, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
|
|
NUM_CALIBRATION_SAMPLES = args.calib_size |
|
DATASET_ID = "garage-bAInd/Open-Platypus" |
|
DATASET_SPLIT = "train" |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
def preprocess(example): |
|
concat_txt = example["instruction"] + "\n" + example["output"] |
|
return {"text": concat_txt} |
|
|
|
ds = ds.map(preprocess) |
|
|
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
truncation=False, |
|
add_special_tokens=True, |
|
) |
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = QuantizationModifier( |
|
targets="Linear", scheme="FP8", ignore=["lm_head", "re:.*block_sparse_moe.gate"] |
|
) |
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
num_calibration_samples=args.calib_size |
|
) |
|
|
|
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8") |
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
# Save to disk in compressed-tensors format |
|
model.save_pretrained(save_path, save_compressed=True, skip_compression_stats=True) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) using the following command: |
|
|
|
OpenLLM Leaderboard V1: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks openllm \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
``` |
|
|
|
|
|
### Accuracy |
|
|
|
#### OpenLLM Leaderboard V1 evaluation scores |
|
|
|
| Metric | mistralai/Mixtral-8x7B-Instruct-v0.1 | neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8 | |
|
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| ARC-Challenge (Acc-Norm, 25-shot) | 70.48 | 69.54 | |
|
| GSM8K (Strict-Match, 5-shot) | 65.50 | 64.29 | |
|
| HellaSwag (Acc-Norm, 10-shot) | 87.33 | 86.96 | |
|
| MMLU (Acc, 5-shot) | 70.30 | 69.97 | |
|
| TruthfulQA (MC2, 0-shot) | 64.81 | 63.89 | |
|
| Winogrande (Acc, 5-shot) | 82.24 | 81.29 | |
|
| **Average Score** | **73.44** | **72.66** | |
|
| **Recovery (%)** | **100.00** | **98.94** | |
|
|
|
|