Rami's picture
update model card README.md
bef476a
|
raw
history blame
2.61 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: multi-label-class-classification-on-github-issues
    results: []

multi-label-class-classification-on-github-issues

This model is a fine-tuned version of neuralmagic/oBERT-12-upstream-pruned-unstructured-97 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1041
  • Micro f1: 0.6590
  • Macro f1: 0.0721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Micro f1 Macro f1
No log 1.0 49 0.2840 0.3791 0.0172
No log 2.0 98 0.1717 0.3791 0.0172
No log 3.0 147 0.1436 0.3796 0.0173
No log 4.0 196 0.1335 0.4608 0.0299
No log 5.0 245 0.1250 0.5254 0.0371
No log 6.0 294 0.1179 0.6312 0.0674
No log 7.0 343 0.1125 0.6097 0.0549
No log 8.0 392 0.1089 0.6368 0.0659
No log 9.0 441 0.1061 0.6562 0.0715
No log 10.0 490 0.1055 0.6525 0.0706
0.1604 11.0 539 0.1030 0.6636 0.0723
0.1604 12.0 588 0.1043 0.6526 0.0708
0.1604 13.0 637 0.1039 0.6561 0.0709
0.1604 14.0 686 0.1050 0.6576 0.0712
0.1604 15.0 735 0.1060 0.6530 0.0749
0.1604 16.0 784 0.1056 0.6606 0.0827

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2