Rami's picture
update model card README.md
05227f9
|
raw
history blame
2.46 kB
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: multi-label-class-classification-on-github-issues
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multi-label-class-classification-on-github-issues
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1391
- Micro f1: 0.5005
- Macro f1: 0.0340
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| No log | 1.0 | 13 | 0.3988 | 0.3783 | 0.0172 |
| No log | 2.0 | 26 | 0.3288 | 0.3791 | 0.0172 |
| No log | 3.0 | 39 | 0.2753 | 0.3791 | 0.0172 |
| No log | 4.0 | 52 | 0.2347 | 0.3791 | 0.0172 |
| No log | 5.0 | 65 | 0.2051 | 0.3791 | 0.0172 |
| No log | 6.0 | 78 | 0.1849 | 0.3791 | 0.0172 |
| No log | 7.0 | 91 | 0.1710 | 0.3791 | 0.0172 |
| No log | 8.0 | 104 | 0.1614 | 0.3791 | 0.0172 |
| No log | 9.0 | 117 | 0.1546 | 0.3791 | 0.0172 |
| No log | 10.0 | 130 | 0.1497 | 0.3796 | 0.0173 |
| No log | 11.0 | 143 | 0.1458 | 0.4143 | 0.0238 |
| No log | 12.0 | 156 | 0.1427 | 0.4567 | 0.0295 |
| No log | 13.0 | 169 | 0.1406 | 0.4709 | 0.0310 |
| No log | 14.0 | 182 | 0.1391 | 0.4886 | 0.0327 |
| No log | 15.0 | 195 | 0.1386 | 0.4909 | 0.0330 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2