license: apache-2.0

RakutenAI-2.0-8x7B

Model Description

RakutenAI-2.0-8x7B is an MoE-based foundation model derived from RakutenAI-7B, first introduced in March 2024. As part of a broader initiative to advance Japanese LLM technology, RakutenAI-2.0-8x7B adopts a Mixture of Experts (MoE) architecture with two active experts, resulting in 13B active parameters. This design enables dynamic expert selection based on input tokens, enhancing computational efficiency while maintaining high performance. RakutenAI-2.0-8x7B achieves state-of-the-art results on Japanese language understanding benchmarks while also demonstrating competitive performance on English evaluation tasks compared to similar models, including Swallow-MX-8x7B-NVE-0.1, Llama-3-Swallow-70B-v0.1, Sarashina2-70B, and PLaMo 100B.

If you are looking for an instruction-tuned model, check RakutenAI-2.0-8x7B-instruct.

Model Evaluation Results

Foundation Model Name Japanese Score English Score Average
Rakuten/RakutenAI-7B 62.93 34.86 48.90
Rakuten/RakutenAI-2.0-8x7B 72.29 41.32 56.80
Tokyotech/Swallow-MX-8x7B-NVE-0.1 66.17 44.33 55.25
Tokyotech/Llama-3-Swallow-70B-v0.1 68.15 51.52 59.84
SBIntuitions/Sarashina2-70B 71.09 39.22 55.16
PreferredNetworks/PLaMo 100B 71.45 36.48 53.96
Table1: RakutenAI-2.0-8x7B foundation model average performance scores on LM-Harness in comparison with other Japanese open models.

Detailed scores are as follows:

Metric jcommonsense_qa jnli marc_ja jsquad jaqket_v2 xlsum_ja xwinograd mgsm arc_challenge hellaswag mmlu truthfulqa_mc2 gsm8k winogrande musr math_hard gpqa bbh ifeval mmlu_pro
Model Name accuracy-3shot accuracy-3shot accuracy-3shot exact_match-2shot exact_match-1shot rouge2-1shot accuracy-0shot accuracy-5shot accuracy_norm-25shot accuracy_norm-10shot accuracy-5shot accuracy-0shot exact_match-5shot accuracy-5shot accuracy_norm-0shot exact_match-4shot accuracy_norm-0shot accuracy_norm-3shot avg_inst_prompt_strict_acc-0shot accuracy-5shot
RakutenAI-7B 85.88 56.61 96.52 69.56 81.44 15.69 74.14 23.60 60.75 82.26 59.83 38.33 32.6 77.43 4.93 2.16 5.02 20.34 14.04 20.57
RakutenAI-2.0-8x7B 93.12 87.43 97.72 74.49 86.00 15.70 78.62 45.20 66.38 85.84 65.50 48.19 51.40 80.51 13.88 3.30 5.71 27.02 22.90 25.22
Swallow-MX-8x7B-NVE-0.1 89.28 43.06 97.15 76.29 87.37 17.09 82.69 40.40 65.87 85.13 69.48 50.38 58.45 82.87 8.78 7.50 13.33 29.41 28.38 32.32
Llama-3-Swallow-70B-v0.1 92.58 66.15 93.46 70.94 71.74 12.58 83.32 54.40 67.58 87.53 77.47 55.29 81.50 85.16 22.05 13.92 16.60 49.53 20.91 40.70
Sarashina2-70B 95.35 60.44 94.50 76.90 88.49 18.24 80.81 54.00 62.63 83.23 63.10 48.68 24.49 79.95 13.52 5.29 5.54 29.73 30.32 24.13
PLaMo 100B 92.05 68.82 97.49 78.01 89.43 20.38 81.02 44.40 49.91 80.98 55.17 44.91 56.10 71.35 6.67 0.00 4.00 23.99 23.39 21.31
Table2: RakutenAI-2.0-8x7B foundation model performance on LM-Harness metrics in comparison with other Japanese open models.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "Rakuten/RakutenAI-2.0-8x7B"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto", device_map="auto")
model.eval()

requests = [
    "南硫黄島原生自然環境保全地域は、自然",
    "The capybara is a giant cavy rodent",
]

for req in requests:
    input_text = tokenizer(req, return_tensors="pt").to(device=model.device)
    tokens = model.generate(
        **input_text,
        max_new_tokens=512,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )
    out = tokenizer.decode(tokens[0], skip_special_tokens=True)
    print("INPUT:\n" + req)
    print("OUTPUT:\n" + out)

Note on Evaluation Scores:

Model Details

Limitations and Bias

The suite of RakutenAI-2.0 models is capable of generating human-like text on a wide range of topics. However, like all LLMs, they have limitations and can produce biased, inaccurate, or unsafe outputs. Please exercise caution and judgement while interacting with them.

Citation

For citing our work on the suite of RakutenAI-2.0 models, please use:

@misc{rakutengroup2025rakutenai2.0,
  author = {Rakuten Group, Inc.},
  title = {RakutenAI-2.0},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/Rakuten},
}
Downloads last month
57
Safetensors
Model size
46.8B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Rakuten/RakutenAI-2.0-8x7B

Finetuned
(5)
this model
Finetunes
1 model
Quantizations
1 model