Eleusis
Collection
8 items
•
Updated
•
2
This is an ONNX optimized version of Eleusis-12B. For a more comprehensive info about the model's capabilities, please visit the original model's repo.
If you're on a CPU-only machine:
pip install onnxruntime
If you have an NVIDIA GPU available:
pip uninstall onnxruntime -y
pip install onnxruntime-gpu
Make sure you have installed CUDA Toolkit and cuDNN
import onnxruntime as ort
from transformers import AutoTokenizer
import numpy as np
import argparse
def generate_text(prompt, num_tokens, model_path, tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
session = ort.InferenceSession(model_path, providers=providers)
input_ids = tokenizer(prompt, return_tensors="np").input_ids
for _ in range(num_tokens):
# Create attention mask and position ids
attention_mask = np.ones_like(input_ids)
position_ids = np.arange(input_ids.shape[1])[None, :]
outputs = session.run(
output_names=['logits'],
input_feed={
'input_ids': input_ids,
'attention_mask': attention_mask,
'position_ids': position_ids
}
)
next_token = np.argmax(outputs[0][0, -1, :])
input_ids = np.concatenate([input_ids, [[next_token]]], axis=1)
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate text using ONNX model')
parser.add_argument('prompt', type=str, help='Input prompt for generation')
parser.add_argument('num_tokens', type=int, help='Number of tokens to generate')
parser.add_argument('--model_path', type=str, default='model.onnx',
help='Path to ONNX model file')
parser.add_argument('--tokenizer_path', type=str, default='tokenizer',
help='Path to tokenizer directory')
args = parser.parse_args()
result = generate_text(args.prompt, args.num_tokens, args.model_path, args.tokenizer_path)
print(result)
python onnx_inference.py "Once upon a time" 512 --model_path /path/to/model.onnx --tokenizer_path /path/to/model/dir
This is an example script, and not properly optimized.
Base model
mistralai/Mistral-Nemo-Base-2407