|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart_samsum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart_samsum |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5520 |
|
- Rouge1: 53.0152 |
|
- Rouge2: 28.029 |
|
- Rougel: 43.8864 |
|
- Rougelsum: 48.7945 |
|
- Gen Len: 30.3138 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.4812 | 1.0 | 921 | 1.5084 | 52.6238 | 27.9144 | 43.3378 | 48.77 | 30.4225 | |
|
| 1.1068 | 2.0 | 1842 | 1.4507 | 53.2142 | 28.5004 | 44.382 | 49.228 | 28.6264 | |
|
| 0.9224 | 3.0 | 2763 | 1.5031 | 52.8334 | 27.9492 | 43.7939 | 48.714 | 29.5751 | |
|
| 0.7957 | 4.0 | 3684 | 1.5520 | 53.0152 | 28.029 | 43.8864 | 48.7945 | 30.3138 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|