license: apache-2.0 | |
pipeline_tag: image-segmentation | |
tags: | |
- BEN | |
- background-remove | |
- mask-generation | |
- Dichotomous image segmentation | |
- background remove | |
- foreground | |
- background | |
# BEN - Background Erase Network (Beta Base Model) | |
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image. | |
- MADE IN AMERICA | |
## Quick Start Code | |
```python | |
import model | |
from PIL import Image | |
import torch | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
file = "./image2.png" # input image | |
model = model.BEN_Base().to(device).eval() #init pipeline | |
model.loadcheckpoints("./BEN_Base.pth") | |
image = Image.open(file) | |
with torch.no_grad(): | |
mask, foreground = model.inference(image) | |
mask.save("./mask.png") | |
foreground.save("./foreground.png") | |
``` | |
# BEN SOA Benchmarks on Disk 5k Eval | |
 | |
### BEN_Base + BEN_Refiner (commercial model please contact us for more information): | |
- MAE: 0.0283 | |
- DICE: 0.8976 | |
- IOU: 0.8430 | |
- BER: 0.0542 | |
- ACC: 0.9725 | |
### BEN_Base (94 million parameters): | |
- MAE: 0.0331 | |
- DICE: 0.8743 | |
- IOU: 0.8301 | |
- BER: 0.0560 | |
- ACC: 0.9700 | |
### MVANet (old SOTA): | |
- MAE: 0.0353 | |
- DICE: 0.8676 | |
- IOU: 0.8104 | |
- BER: 0.0639 | |
- ACC: 0.9660 | |
### BiRefNet(not tested in house): | |
- MAE: 0.038 | |
### InSPyReNet (not tested in house): | |
- MAE: 0.042 | |
## Features | |
- Background removal from images | |
- Generates both binary mask and foreground image | |
- CUDA support for GPU acceleration | |
- Simple API for easy integration | |
## Installation | |
1. Clone Repo | |
2. Install requirements.txt | |