kyujinpy's picture
Upload README.md
d92f86e
|
raw
history blame
1.84 kB
metadata
language:
  - en
  - ko
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0

SOLAR-tail-10.7B-Merge-v1.0

Model Details

Model Developers Kyujin Han (kyujinpy)

Method
Using Mergekit.

Merge config

slices:
  - sources:
      - model: upstage/SOLAR-10.7B-v1.0
        layer_range: [0, 48]
      - model: Yhyu13/LMCocktail-10.7B-v1
        layer_range: [0, 48]
        
merge_method: slerp
base_model: upstage/SOLAR-10.7B-v1.0

parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
tokenizer_source: union
    
dtype: float16

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 NaN NaN NaN NaN NaN NaN NaN
jjourney1125/M-SOLAR-10.7B-v1.0 55.15 49.57 60.12 54.60 49.23 62.22
beomi/Yi-Ko-6B 48.79 41.04 53.39 46.28 41.64 61.63
mistralai/Mistral-7B-v0.1 46.89 38.14 48.19 45.20 46.13 56.79

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)