eval_p = 0.9822171390155553 eval_r = 0.9790383704405495 eval_f1 = 0.9806131065277388

train result

Epoch Training Loss Validation Loss Precision Recall F1
1 No log 223.361084 0.980017 0.937134 0.957643
2 No log 61.423782 0.973549 0.959132 0.965962
3 2994.676800 72.477470 0.976213 0.962664 0.969052
4 2994.676800 103.387581 0.971125 0.962664 0.966845
5 33.797800 156.035553 0.975023 0.964581 0.969666
6 33.797800 265.293549 0.971879 0.969324 0.970583
7 20.226000 766.043457 0.974243 0.965187 0.969429
8 20.226000 1143.557495 0.974143 0.965691 0.969722
9 23.267200 996.235901 0.974592 0.968517 0.971405
10 23.267200 959.597229 0.974522 0.966398 0.970242

eval result

Label Precision Recall F1-Score Support
B-CONT 1.00 1.00 1.00 33
B-EDU 1.00 1.00 1.00 106
B-LOC 1.00 1.00 1.00 2
B-NAME 1.00 1.00 1.00 110
B-ORG 0.99 0.98 0.98 523
B-PRO 0.95 1.00 0.97 18
B-RACE 1.00 1.00 1.00 15
B-TITLE 0.96 0.96 0.96 690
I-CONT 1.00 1.00 1.00 97
I-EDU 1.00 1.00 1.00 283
I-LOC 1.00 1.00 1.00 8
I-NAME 1.00 1.00 1.00 177
I-ORG 0.99 0.98 0.99 4146
I-PRO 0.93 1.00 0.96 51
I-RACE 1.00 1.00 1.00 14
I-TITLE 0.97 0.97 0.97 2171
O 0.00 0.00 0.00 0

{'eval_loss': 684.596923828125, 'eval_precision': 0.9822171390155553, 'eval_recall': 0.9790383704405495, 'eval_f1': 0.9806131065277388, 'eval_runtime': 5.8637, 'eval_samples_per_second': 78.96, 'eval_steps_per_second': 4.946, 'epoch': 10.0}

Downloads last month
172
Safetensors
Model size
334M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for PassbyGrocer/resume_ner_herb

Finetuned
(57)
this model

Dataset used to train PassbyGrocer/resume_ner_herb