algorithmic_trading / finrl_demo.py
Edwin Salguero
chore: enterprise-grade project structure, robust .gitignore, and directory cleanup
9289e29
#!/usr/bin/env python3
"""
FinRL Demo Script
This script demonstrates the integration of FinRL with the algorithmic trading system.
It shows how to train a reinforcement learning agent and use it for trading decisions.
"""
import os
import sys
import yaml
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import logging
# Add the project root to the path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig, create_finrl_agent_from_config
from agentic_ai_system.synthetic_data_generator import SyntheticDataGenerator
from agentic_ai_system.logger_config import setup_logging
def load_config(config_path: str = 'config.yaml') -> dict:
"""Load configuration from YAML file"""
with open(config_path, 'r') as file:
return yaml.safe_load(file)
# Setup logging
config = load_config()
setup_logging(config)
logger = logging.getLogger(__name__)
def generate_training_data(config: dict) -> pd.DataFrame:
"""Generate synthetic data for training"""
logger.info("Generating synthetic training data")
generator = SyntheticDataGenerator(config)
# Generate training data (longer period)
train_data = generator.generate_ohlcv_data(
symbol='AAPL',
start_date='2023-01-01',
end_date='2023-12-31',
frequency='1H'
)
# Add technical indicators
train_data['sma_20'] = train_data['close'].rolling(window=20).mean()
train_data['sma_50'] = train_data['close'].rolling(window=50).mean()
train_data['rsi'] = calculate_rsi(train_data['close'])
bb_upper, bb_lower = calculate_bollinger_bands(train_data['close'])
train_data['bb_upper'] = bb_upper
train_data['bb_lower'] = bb_lower
train_data['macd'] = calculate_macd(train_data['close'])
# Fill NaN values
train_data = train_data.fillna(method='bfill').fillna(0)
logger.info(f"Generated {len(train_data)} training samples")
return train_data
def generate_test_data(config: dict) -> pd.DataFrame:
"""Generate synthetic data for testing"""
logger.info("Generating synthetic test data")
generator = SyntheticDataGenerator(config)
# Generate test data (shorter period)
test_data = generator.generate_ohlcv_data(
symbol='AAPL',
start_date='2024-01-01',
end_date='2024-03-31',
frequency='1H'
)
# Add technical indicators
test_data['sma_20'] = test_data['close'].rolling(window=20).mean()
test_data['sma_50'] = test_data['close'].rolling(window=50).mean()
test_data['rsi'] = calculate_rsi(test_data['close'])
bb_upper, bb_lower = calculate_bollinger_bands(test_data['close'])
test_data['bb_upper'] = bb_upper
test_data['bb_lower'] = bb_lower
test_data['macd'] = calculate_macd(test_data['close'])
# Fill NaN values
test_data = test_data.fillna(method='bfill').fillna(0)
logger.info(f"Generated {len(test_data)} test samples")
return test_data
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
"""Calculate RSI indicator"""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2):
"""Calculate Bollinger Bands"""
sma = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = sma + (std * std_dev)
lower_band = sma - (std * std_dev)
return upper_band, lower_band
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> pd.Series:
"""Calculate MACD indicator"""
ema_fast = prices.ewm(span=fast).mean()
ema_slow = prices.ewm(span=slow).mean()
macd_line = ema_fast - ema_slow
return macd_line
def train_finrl_agent(config: dict, train_data: pd.DataFrame, test_data: pd.DataFrame) -> FinRLAgent:
"""Train the FinRL agent"""
logger.info("Starting FinRL agent training")
# Create FinRL agent
finrl_config = FinRLConfig(**{k: v for k, v in config['finrl'].items() if k in FinRLConfig.__dataclass_fields__})
agent = FinRLAgent(finrl_config)
# Train the agent
training_result = agent.train(
data=train_data,
config=config,
total_timesteps=config['finrl']['training']['total_timesteps']
)
logger.info(f"Training completed: {training_result}")
# Save the model
if config['finrl']['training']['save_best_model']:
model_path = config['finrl']['training']['model_save_path']
os.makedirs(os.path.dirname(model_path), exist_ok=True)
agent.save_model(model_path)
return agent
def evaluate_agent(agent: FinRLAgent, test_data: pd.DataFrame, config: dict) -> dict:
"""Evaluate the trained agent"""
logger.info("Evaluating FinRL agent")
# Evaluate on test data
evaluation_results = agent.evaluate(test_data, config)
logger.info(f"Evaluation results: {evaluation_results}")
return evaluation_results
def generate_predictions(agent: FinRLAgent, test_data: pd.DataFrame, config: dict) -> list:
"""Generate trading predictions"""
logger.info("Generating trading predictions")
prediction_results = agent.predict(test_data, config)
if prediction_results['success']:
predictions = prediction_results['actions']
logger.info(f"Generated {len(predictions)} predictions")
return predictions
else:
logger.error(f"Prediction failed: {prediction_results['error']}")
return []
def plot_results(test_data: pd.DataFrame, predictions: list, evaluation_results: dict):
"""Plot trading results"""
logger.info("Creating visualization plots")
# Create figure with subplots
fig, axes = plt.subplots(3, 1, figsize=(15, 12))
# Plot 1: Price and predictions
axes[0].plot(test_data.index, test_data['close'], label='Close Price', alpha=0.7)
# Mark buy/sell signals only if predictions are available
if predictions:
buy_signals = [i for i, pred in enumerate(predictions) if pred == 2]
sell_signals = [i for i, pred in enumerate(predictions) if pred == 0]
if buy_signals:
axes[0].scatter(test_data.index[buy_signals], test_data['close'].iloc[buy_signals],
color='green', marker='^', s=100, label='Buy Signal', alpha=0.8)
if sell_signals:
axes[0].scatter(test_data.index[sell_signals], test_data['close'].iloc[sell_signals],
color='red', marker='v', s=100, label='Sell Signal', alpha=0.8)
axes[0].set_title('Price Action and Trading Signals')
axes[0].set_ylabel('Price')
axes[0].legend()
axes[0].grid(True, alpha=0.3)
# Plot 2: Technical indicators
axes[1].plot(test_data.index, test_data['close'], label='Close Price', alpha=0.7)
axes[1].plot(test_data.index, test_data['sma_20'], label='SMA 20', alpha=0.7)
axes[1].plot(test_data.index, test_data['sma_50'], label='SMA 50', alpha=0.7)
axes[1].plot(test_data.index, test_data['bb_upper'], label='BB Upper', alpha=0.5)
axes[1].plot(test_data.index, test_data['bb_lower'], label='BB Lower', alpha=0.5)
axes[1].set_title('Technical Indicators')
axes[1].set_ylabel('Price')
axes[1].legend()
axes[1].grid(True, alpha=0.3)
# Plot 3: RSI
axes[2].plot(test_data.index, test_data['rsi'], label='RSI', color='purple')
axes[2].axhline(y=70, color='r', linestyle='--', alpha=0.5, label='Overbought')
axes[2].axhline(y=30, color='g', linestyle='--', alpha=0.5, label='Oversold')
axes[2].set_title('RSI Indicator')
axes[2].set_ylabel('RSI')
axes[2].set_xlabel('Time')
axes[2].legend()
axes[2].grid(True, alpha=0.3)
plt.tight_layout()
# Save plot
os.makedirs('plots', exist_ok=True)
plt.savefig('plots/finrl_trading_results.png', dpi=300, bbox_inches='tight')
plt.show()
logger.info("Plots saved to plots/finrl_trading_results.png")
def print_summary(evaluation_results: dict, predictions: list):
"""Print trading summary"""
print("\n" + "="*60)
print("FINRL TRADING SYSTEM SUMMARY")
print("="*60)
if evaluation_results.get('success', False):
print(f"Algorithm: {evaluation_results.get('algorithm', 'Unknown')}")
print(f"Total Return: {evaluation_results.get('total_return', 0):.2%}")
print(f"Final Portfolio Value: ${evaluation_results.get('final_portfolio_value', 0):,.2f}")
print(f"Total Reward: {evaluation_results.get('total_reward', 0):.4f}")
print(f"Sharpe Ratio: {evaluation_results.get('sharpe_ratio', 0):.4f}")
print(f"Number of Trading Steps: {evaluation_results.get('steps', 0)}")
print(f"Max Drawdown: {evaluation_results.get('max_drawdown', 0):.2%}")
else:
print(f"Evaluation failed: {evaluation_results.get('error', 'Unknown error')}")
# Trading statistics
if predictions:
buy_signals = sum(1 for pred in predictions if pred == 2)
sell_signals = sum(1 for pred in predictions if pred == 0)
hold_signals = sum(1 for pred in predictions if pred == 1)
print(f"\nTrading Signals:")
print(f" Buy signals: {buy_signals}")
print(f" Sell signals: {sell_signals}")
print(f" Hold signals: {hold_signals}")
print(f" Total signals: {len(predictions)}")
else:
print(f"\nNo trading predictions available")
print("\n" + "="*60)
def main():
"""Main function to run the FinRL demo"""
logger.info("Starting FinRL Demo")
try:
# Load configuration
config = load_config()
# Generate data
train_data = generate_training_data(config)
test_data = generate_test_data(config)
# Train FinRL agent
agent = train_finrl_agent(config, train_data, test_data)
# Evaluate agent
evaluation_results = evaluate_agent(agent, test_data, config)
# Generate predictions
predictions = generate_predictions(agent, test_data, config)
# Create visualizations
plot_results(test_data, predictions, evaluation_results)
# Print summary
print_summary(evaluation_results, predictions)
logger.info("FinRL Demo completed successfully")
except Exception as e:
logger.error(f"Error in FinRL demo: {str(e)}")
raise
if __name__ == "__main__":
main()