File size: 10,863 Bytes
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b59c5e
 
 
 
 
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9289e29
2c67d05
 
 
 
 
9289e29
 
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
9289e29
2c67d05
 
 
 
9289e29
2c67d05
 
 
 
 
 
9289e29
2c67d05
 
 
9289e29
2c67d05
9289e29
 
 
 
 
 
 
2c67d05
 
 
 
 
 
 
 
 
 
 
 
9289e29
 
 
 
 
 
 
 
 
 
 
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9289e29
 
 
 
 
 
 
 
 
 
2c67d05
 
9289e29
 
 
 
 
 
 
 
 
 
 
 
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9289e29
2c67d05
 
9289e29
2c67d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/usr/bin/env python3
"""
FinRL Demo Script

This script demonstrates the integration of FinRL with the algorithmic trading system.
It shows how to train a reinforcement learning agent and use it for trading decisions.
"""

import os
import sys
import yaml
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import logging

# Add the project root to the path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

from agentic_ai_system.finrl_agent import FinRLAgent, FinRLConfig, create_finrl_agent_from_config
from agentic_ai_system.synthetic_data_generator import SyntheticDataGenerator
from agentic_ai_system.logger_config import setup_logging


def load_config(config_path: str = 'config.yaml') -> dict:
    """Load configuration from YAML file"""
    with open(config_path, 'r') as file:
        return yaml.safe_load(file)

# Setup logging
config = load_config()
setup_logging(config)
logger = logging.getLogger(__name__)


def generate_training_data(config: dict) -> pd.DataFrame:
    """Generate synthetic data for training"""
    logger.info("Generating synthetic training data")
    
    generator = SyntheticDataGenerator(config)
    
    # Generate training data (longer period)
    train_data = generator.generate_ohlcv_data(
        symbol='AAPL',
        start_date='2023-01-01',
        end_date='2023-12-31',
        frequency='1H'
    )
    
    # Add technical indicators
    train_data['sma_20'] = train_data['close'].rolling(window=20).mean()
    train_data['sma_50'] = train_data['close'].rolling(window=50).mean()
    train_data['rsi'] = calculate_rsi(train_data['close'])
    bb_upper, bb_lower = calculate_bollinger_bands(train_data['close'])
    train_data['bb_upper'] = bb_upper
    train_data['bb_lower'] = bb_lower
    train_data['macd'] = calculate_macd(train_data['close'])
    
    # Fill NaN values
    train_data = train_data.fillna(method='bfill').fillna(0)
    
    logger.info(f"Generated {len(train_data)} training samples")
    return train_data


def generate_test_data(config: dict) -> pd.DataFrame:
    """Generate synthetic data for testing"""
    logger.info("Generating synthetic test data")
    
    generator = SyntheticDataGenerator(config)
    
    # Generate test data (shorter period)
    test_data = generator.generate_ohlcv_data(
        symbol='AAPL',
        start_date='2024-01-01',
        end_date='2024-03-31',
        frequency='1H'
    )
    
    # Add technical indicators
    test_data['sma_20'] = test_data['close'].rolling(window=20).mean()
    test_data['sma_50'] = test_data['close'].rolling(window=50).mean()
    test_data['rsi'] = calculate_rsi(test_data['close'])
    bb_upper, bb_lower = calculate_bollinger_bands(test_data['close'])
    test_data['bb_upper'] = bb_upper
    test_data['bb_lower'] = bb_lower
    test_data['macd'] = calculate_macd(test_data['close'])
    
    # Fill NaN values
    test_data = test_data.fillna(method='bfill').fillna(0)
    
    logger.info(f"Generated {len(test_data)} test samples")
    return test_data


def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
    """Calculate RSI indicator"""
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    rsi = 100 - (100 / (1 + rs))
    return rsi


def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2):
    """Calculate Bollinger Bands"""
    sma = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper_band = sma + (std * std_dev)
    lower_band = sma - (std * std_dev)
    return upper_band, lower_band


def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> pd.Series:
    """Calculate MACD indicator"""
    ema_fast = prices.ewm(span=fast).mean()
    ema_slow = prices.ewm(span=slow).mean()
    macd_line = ema_fast - ema_slow
    return macd_line


def train_finrl_agent(config: dict, train_data: pd.DataFrame, test_data: pd.DataFrame) -> FinRLAgent:
    """Train the FinRL agent"""
    logger.info("Starting FinRL agent training")
    
    # Create FinRL agent
    finrl_config = FinRLConfig(**{k: v for k, v in config['finrl'].items() if k in FinRLConfig.__dataclass_fields__})
    agent = FinRLAgent(finrl_config)
    
    # Train the agent
    training_result = agent.train(
        data=train_data,
        config=config,
        total_timesteps=config['finrl']['training']['total_timesteps']
    )
    
    logger.info(f"Training completed: {training_result}")
    
    # Save the model
    if config['finrl']['training']['save_best_model']:
        model_path = config['finrl']['training']['model_save_path']
        os.makedirs(os.path.dirname(model_path), exist_ok=True)
        agent.save_model(model_path)
    
    return agent


def evaluate_agent(agent: FinRLAgent, test_data: pd.DataFrame, config: dict) -> dict:
    """Evaluate the trained agent"""
    logger.info("Evaluating FinRL agent")
    
    # Evaluate on test data
    evaluation_results = agent.evaluate(test_data, config)
    
    logger.info(f"Evaluation results: {evaluation_results}")
    
    return evaluation_results


def generate_predictions(agent: FinRLAgent, test_data: pd.DataFrame, config: dict) -> list:
    """Generate trading predictions"""
    logger.info("Generating trading predictions")
    
    prediction_results = agent.predict(test_data, config)
    
    if prediction_results['success']:
        predictions = prediction_results['actions']
        logger.info(f"Generated {len(predictions)} predictions")
        return predictions
    else:
        logger.error(f"Prediction failed: {prediction_results['error']}")
        return []


def plot_results(test_data: pd.DataFrame, predictions: list, evaluation_results: dict):
    """Plot trading results"""
    logger.info("Creating visualization plots")
    
    # Create figure with subplots
    fig, axes = plt.subplots(3, 1, figsize=(15, 12))
    
    # Plot 1: Price and predictions
    axes[0].plot(test_data.index, test_data['close'], label='Close Price', alpha=0.7)
    
    # Mark buy/sell signals only if predictions are available
    if predictions:
        buy_signals = [i for i, pred in enumerate(predictions) if pred == 2]
        sell_signals = [i for i, pred in enumerate(predictions) if pred == 0]
        
        if buy_signals:
            axes[0].scatter(test_data.index[buy_signals], test_data['close'].iloc[buy_signals], 
                           color='green', marker='^', s=100, label='Buy Signal', alpha=0.8)
        if sell_signals:
            axes[0].scatter(test_data.index[sell_signals], test_data['close'].iloc[sell_signals], 
                           color='red', marker='v', s=100, label='Sell Signal', alpha=0.8)
    
    axes[0].set_title('Price Action and Trading Signals')
    axes[0].set_ylabel('Price')
    axes[0].legend()
    axes[0].grid(True, alpha=0.3)
    
    # Plot 2: Technical indicators
    axes[1].plot(test_data.index, test_data['close'], label='Close Price', alpha=0.7)
    axes[1].plot(test_data.index, test_data['sma_20'], label='SMA 20', alpha=0.7)
    axes[1].plot(test_data.index, test_data['sma_50'], label='SMA 50', alpha=0.7)
    axes[1].plot(test_data.index, test_data['bb_upper'], label='BB Upper', alpha=0.5)
    axes[1].plot(test_data.index, test_data['bb_lower'], label='BB Lower', alpha=0.5)
    
    axes[1].set_title('Technical Indicators')
    axes[1].set_ylabel('Price')
    axes[1].legend()
    axes[1].grid(True, alpha=0.3)
    
    # Plot 3: RSI
    axes[2].plot(test_data.index, test_data['rsi'], label='RSI', color='purple')
    axes[2].axhline(y=70, color='r', linestyle='--', alpha=0.5, label='Overbought')
    axes[2].axhline(y=30, color='g', linestyle='--', alpha=0.5, label='Oversold')
    axes[2].set_title('RSI Indicator')
    axes[2].set_ylabel('RSI')
    axes[2].set_xlabel('Time')
    axes[2].legend()
    axes[2].grid(True, alpha=0.3)
    
    plt.tight_layout()
    
    # Save plot
    os.makedirs('plots', exist_ok=True)
    plt.savefig('plots/finrl_trading_results.png', dpi=300, bbox_inches='tight')
    plt.show()
    
    logger.info("Plots saved to plots/finrl_trading_results.png")


def print_summary(evaluation_results: dict, predictions: list):
    """Print trading summary"""
    print("\n" + "="*60)
    print("FINRL TRADING SYSTEM SUMMARY")
    print("="*60)
    
    if evaluation_results.get('success', False):
        print(f"Algorithm: {evaluation_results.get('algorithm', 'Unknown')}")
        print(f"Total Return: {evaluation_results.get('total_return', 0):.2%}")
        print(f"Final Portfolio Value: ${evaluation_results.get('final_portfolio_value', 0):,.2f}")
        print(f"Total Reward: {evaluation_results.get('total_reward', 0):.4f}")
        print(f"Sharpe Ratio: {evaluation_results.get('sharpe_ratio', 0):.4f}")
        print(f"Number of Trading Steps: {evaluation_results.get('steps', 0)}")
        print(f"Max Drawdown: {evaluation_results.get('max_drawdown', 0):.2%}")
    else:
        print(f"Evaluation failed: {evaluation_results.get('error', 'Unknown error')}")
    
    # Trading statistics
    if predictions:
        buy_signals = sum(1 for pred in predictions if pred == 2)
        sell_signals = sum(1 for pred in predictions if pred == 0)
        hold_signals = sum(1 for pred in predictions if pred == 1)
        
        print(f"\nTrading Signals:")
        print(f"  Buy signals: {buy_signals}")
        print(f"  Sell signals: {sell_signals}")
        print(f"  Hold signals: {hold_signals}")
        print(f"  Total signals: {len(predictions)}")
    else:
        print(f"\nNo trading predictions available")
    
    print("\n" + "="*60)


def main():
    """Main function to run the FinRL demo"""
    logger.info("Starting FinRL Demo")
    
    try:
        # Load configuration
        config = load_config()
        
        # Generate data
        train_data = generate_training_data(config)
        test_data = generate_test_data(config)
        
        # Train FinRL agent
        agent = train_finrl_agent(config, train_data, test_data)
        
        # Evaluate agent
        evaluation_results = evaluate_agent(agent, test_data, config)
        
        # Generate predictions
        predictions = generate_predictions(agent, test_data, config)
        
        # Create visualizations
        plot_results(test_data, predictions, evaluation_results)
        
        # Print summary
        print_summary(evaluation_results, predictions)
        
        logger.info("FinRL Demo completed successfully")
        
    except Exception as e:
        logger.error(f"Error in FinRL demo: {str(e)}")
        raise


if __name__ == "__main__":
    main()