Edwin Salguero
Initial commit: Enhanced Algorithmic Trading System with Synthetic Data Generation, Comprehensive Logging, and Extensive Testing
859af74
Algorithmic Trading System
A comprehensive algorithmic trading system with synthetic data generation, comprehensive logging, and extensive testing capabilities.
Features
Core Trading System
- Agent-based Architecture: Modular design with separate strategy and execution agents
- Technical Analysis: Built-in technical indicators (SMA, RSI, Bollinger Bands, MACD)
- Risk Management: Position sizing and drawdown limits
- Order Execution: Simulated broker integration with realistic execution delays
Synthetic Data Generation
- Realistic Market Data: Generate OHLCV data using geometric Brownian motion
- Multiple Frequencies: Support for 1min, 5min, 1H, and 1D data
- Market Scenarios: Normal, volatile, trending, and crash market conditions
- Tick Data: High-frequency tick data generation for testing
- Configurable Parameters: Volatility, trend, noise levels, and base prices
Comprehensive Logging
- Multi-level Logging: Console and file-based logging
- Rotating Log Files: Automatic log rotation with size limits
- Specialized Loggers: Separate loggers for trading, performance, and errors
- Structured Logging: Detailed log messages with timestamps and context
Testing Framework
- Unit Tests: Comprehensive tests for all components
- Integration Tests: End-to-end workflow testing
- Test Coverage: Code coverage reporting with HTML and XML outputs
- Mock Testing: Isolated testing with mocked dependencies
Installation
- Clone the repository:
git clone <repository-url>
cd algorithmic_trading
- Install dependencies:
pip install -r requirements.txt
Configuration
The system is configured via config.yaml
:
# Data source configuration
data_source:
type: 'synthetic' # or 'csv'
path: 'data/market_data.csv'
# Trading parameters
trading:
symbol: 'AAPL'
timeframe: '1min'
capital: 100000
# Risk management
risk:
max_position: 100
max_drawdown: 0.05
# Order execution
execution:
broker_api: 'paper'
order_size: 10
delay_ms: 100
success_rate: 0.95
# Synthetic data generation
synthetic_data:
base_price: 150.0
volatility: 0.02
trend: 0.001
noise_level: 0.005
generate_data: true
data_path: 'data/synthetic_market_data.csv'
# Logging configuration
logging:
log_level: 'INFO'
log_dir: 'logs'
enable_console: true
enable_file: true
max_file_size_mb: 10
backup_count: 5
Usage
Standard Trading Mode
python -m agentic_ai_system.main
Backtest Mode
python -m agentic_ai_system.main --mode backtest --start-date 2024-01-01 --end-date 2024-12-31
Live Trading Mode
python -m agentic_ai_system.main --mode live --duration 60
Custom Configuration
python -m agentic_ai_system.main --config custom_config.yaml
Running Tests
All Tests
pytest
Unit Tests Only
pytest -m unit
Integration Tests Only
pytest -m integration
With Coverage Report
pytest --cov=agentic_ai_system --cov-report=html
Specific Test File
pytest tests/test_synthetic_data_generator.py
System Architecture
Components
- SyntheticDataGenerator: Generates realistic market data for testing
- DataIngestion: Loads and validates market data from various sources
- StrategyAgent: Analyzes market data and generates trading signals
- ExecutionAgent: Executes trading orders with broker simulation
- Orchestrator: Coordinates the entire trading workflow
- LoggerConfig: Manages comprehensive logging throughout the system
Data Flow
Synthetic Data Generator β Data Ingestion β Strategy Agent β Execution Agent
β
Logging System
Synthetic Data Generation
Features
- Geometric Brownian Motion: Realistic price movement simulation
- OHLCV Data: Complete market data with open, high, low, close, and volume
- Market Scenarios: Different market conditions for testing
- Configurable Parameters: Adjustable volatility, trend, and noise levels
Usage Examples
from agentic_ai_system.synthetic_data_generator import SyntheticDataGenerator
# Initialize generator
generator = SyntheticDataGenerator(config)
# Generate OHLCV data
data = generator.generate_ohlcv_data(
symbol='AAPL',
start_date='2024-01-01',
end_date='2024-12-31',
frequency='1min'
)
# Generate tick data
tick_data = generator.generate_tick_data(
symbol='AAPL',
duration_minutes=60,
tick_interval_ms=1000
)
# Generate market scenarios
crash_data = generator.generate_market_scenarios('crash')
volatile_data = generator.generate_market_scenarios('volatile')
Logging System
Log Files
logs/trading_system.log
: General system logslogs/trading.log
: Trading-specific logslogs/performance.log
: Performance metricslogs/errors.log
: Error logs
Log Levels
- DEBUG: Detailed debugging information
- INFO: General information about system operation
- WARNING: Warning messages for potential issues
- ERROR: Error messages for failed operations
- CRITICAL: Critical system failures
Usage Examples
import logging
from agentic_ai_system.logger_config import setup_logging, get_logger
# Setup logging
setup_logging(config)
# Get logger for specific module
logger = get_logger(__name__)
# Log messages
logger.info("Trading signal generated")
logger.warning("High volatility detected")
logger.error("Order execution failed", exc_info=True)
Testing
Test Structure
tests/
βββ __init__.py
βββ test_synthetic_data_generator.py
βββ test_strategy_agent.py
βββ test_execution_agent.py
βββ test_data_ingestion.py
βββ test_integration.py
Test Categories
- Unit Tests: Test individual components in isolation
- Integration Tests: Test complete workflows
- Performance Tests: Test system performance and scalability
- Error Handling Tests: Test error conditions and edge cases
Running Specific Tests
# Run tests with specific markers
pytest -m unit
pytest -m integration
pytest -m slow
# Run tests with coverage
pytest --cov=agentic_ai_system --cov-report=html
# Run tests in parallel
pytest -n auto
# Run tests with verbose output
pytest -v
Performance Monitoring
The system includes comprehensive performance monitoring:
- Execution Time Tracking: Monitor workflow execution times
- Trade Statistics: Track successful vs failed trades
- Performance Metrics: Calculate returns and drawdowns
- Resource Usage: Monitor memory and CPU usage
Error Handling
The system includes robust error handling:
- Graceful Degradation: System continues operation despite component failures
- Error Logging: Comprehensive error logging with stack traces
- Fallback Mechanisms: Automatic fallback to synthetic data when CSV files are missing
- Validation: Data validation at multiple levels
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Disclaimer
This is a simulation system for educational and testing purposes. It is not intended for real trading and should not be used with real money. Always test thoroughly before using any trading system with real funds.