Segmentation / utils /visualization.py
Edwin Salguero
Initial commit: SAM 2 Few-Shot/Zero-Shot Segmentation Research Framework
12fa055
"""
Visualization Utilities
This module provides comprehensive visualization tools for segmentation results,
attention maps, and experiment comparisons in few-shot and zero-shot learning.
"""
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.colors import ListedColormap
import seaborn as sns
from typing import Dict, List, Tuple, Optional, Union
import cv2
from PIL import Image
import os
class SegmentationVisualizer:
"""Visualization tools for segmentation results."""
def __init__(self, figsize: Tuple[int, int] = (15, 10)):
self.figsize = figsize
# Color maps for different classes
self.class_colors = {
'building': [1.0, 0.0, 0.0], # Red
'road': [0.0, 1.0, 0.0], # Green
'vegetation': [0.0, 0.0, 1.0], # Blue
'water': [1.0, 1.0, 0.0], # Yellow
'shirt': [1.0, 0.5, 0.0], # Orange
'pants': [0.5, 0.0, 1.0], # Purple
'dress': [0.0, 1.0, 1.0], # Cyan
'shoes': [1.0, 0.0, 1.0], # Magenta
'robot': [0.5, 0.5, 0.5], # Gray
'tool': [0.8, 0.4, 0.2], # Brown
'safety': [0.2, 0.8, 0.2] # Light Green
}
def visualize_segmentation(
self,
image: torch.Tensor,
predictions: Dict[str, torch.Tensor],
ground_truth: Optional[Dict[str, torch.Tensor]] = None,
title: str = "Segmentation Results"
) -> plt.Figure:
"""Visualize segmentation results with optional ground truth comparison."""
num_classes = len(predictions)
has_gt = ground_truth is not None
# Calculate subplot layout
if has_gt:
cols = 3
rows = max(2, num_classes)
else:
cols = 2
rows = max(1, num_classes)
fig, axes = plt.subplots(rows, cols, figsize=(cols * 5, rows * 4))
if rows == 1:
axes = axes.reshape(1, -1)
# Original image
image_np = image.permute(1, 2, 0).cpu().numpy()
# Denormalize if needed
if image_np.min() < 0 or image_np.max() > 1:
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
axes[0, 0].imshow(image_np)
axes[0, 0].set_title("Original Image")
axes[0, 0].axis('off')
# Combined prediction overlay
if cols > 1:
combined_pred = self.create_combined_mask(predictions)
axes[0, 1].imshow(image_np)
axes[0, 1].imshow(combined_pred, alpha=0.6, cmap='tab10')
axes[0, 1].set_title("Combined Predictions")
axes[0, 1].axis('off')
# Ground truth overlay
if has_gt and cols > 2:
combined_gt = self.create_combined_mask(ground_truth)
axes[0, 2].imshow(image_np)
axes[0, 2].imshow(combined_gt, alpha=0.6, cmap='tab10')
axes[0, 2].set_title("Ground Truth")
axes[0, 2].axis('off')
# Individual class predictions
for i, (class_name, pred_mask) in enumerate(predictions.items()):
row = i + 1 if has_gt else i
col_offset = 0
# Prediction mask
pred_np = pred_mask.cpu().numpy()
axes[row, col_offset].imshow(pred_np, cmap='gray')
axes[row, col_offset].set_title(f"Prediction: {class_name}")
axes[row, col_offset].axis('off')
# Overlay on original image
col_offset += 1
axes[row, col_offset].imshow(image_np)
axes[row, col_offset].imshow(pred_np, alpha=0.6, cmap='Reds')
axes[row, col_offset].set_title(f"Overlay: {class_name}")
axes[row, col_offset].axis('off')
# Ground truth comparison
if has_gt and class_name in ground_truth:
col_offset += 1
gt_mask = ground_truth[class_name]
gt_np = gt_mask.cpu().numpy()
# Create comparison visualization
comparison = np.zeros((*gt_np.shape, 3))
comparison[gt_np > 0.5] = [0, 1, 0] # Green for ground truth
comparison[pred_np > 0.5] = [1, 0, 0] # Red for prediction
comparison[(gt_np > 0.5) & (pred_np > 0.5)] = [1, 1, 0] # Yellow for overlap
axes[row, col_offset].imshow(image_np)
axes[row, col_offset].imshow(comparison, alpha=0.6)
axes[row, col_offset].set_title(f"Comparison: {class_name}")
axes[row, col_offset].axis('off')
plt.tight_layout()
return fig
def create_combined_mask(self, masks: Dict[str, torch.Tensor]) -> np.ndarray:
"""Create a combined mask visualization for multiple classes."""
if not masks:
return np.zeros((512, 512))
# Get the shape from the first mask
first_mask = list(masks.values())[0]
combined = np.zeros((*first_mask.shape, 3))
for i, (class_name, mask) in enumerate(masks.items()):
mask_np = mask.cpu().numpy()
color = self.class_colors.get(class_name, [1, 1, 1])
# Apply color to mask
for c in range(3):
combined[:, :, c] += mask_np * color[c]
# Normalize
combined = np.clip(combined, 0, 1)
return combined
def visualize_attention_maps(
self,
image: torch.Tensor,
attention_maps: torch.Tensor,
class_names: List[str],
title: str = "Attention Maps"
) -> plt.Figure:
"""Visualize attention maps for different classes."""
num_classes = len(class_names)
fig, axes = plt.subplots(2, num_classes, figsize=(num_classes * 4, 8))
# Original image
image_np = image.permute(1, 2, 0).cpu().numpy()
if image_np.min() < 0 or image_np.max() > 1:
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
for i in range(num_classes):
axes[0, i].imshow(image_np)
axes[0, i].set_title(f"Original - {class_names[i]}")
axes[0, i].axis('off')
# Attention maps
attention_np = attention_maps.cpu().numpy()
for i in range(min(num_classes, attention_np.shape[0])):
attention_map = attention_np[i]
# Resize attention map to image size
attention_map = cv2.resize(attention_map, (image_np.shape[1], image_np.shape[0]))
axes[1, i].imshow(attention_map, cmap='hot')
axes[1, i].set_title(f"Attention - {class_names[i]}")
axes[1, i].axis('off')
plt.tight_layout()
return fig
def visualize_prompt_points(
self,
image: torch.Tensor,
prompts: List[Dict],
title: str = "Prompt Points"
) -> plt.Figure:
"""Visualize prompt points and boxes on the image."""
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
# Original image
image_np = image.permute(1, 2, 0).cpu().numpy()
if image_np.min() < 0 or image_np.max() > 1:
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
ax.imshow(image_np)
# Plot prompts
colors = plt.cm.Set3(np.linspace(0, 1, len(prompts)))
for i, prompt in enumerate(prompts):
color = colors[i]
if prompt['type'] == 'point':
x, y = prompt['data']
ax.scatter(x, y, c=[color], s=100, marker='o',
label=f"{prompt['class']} (point)")
elif prompt['type'] == 'box':
x1, y1, x2, y2 = prompt['data']
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1,
linewidth=2, edgecolor=color,
facecolor='none',
label=f"{prompt['class']} (box)")
ax.add_patch(rect)
ax.set_title(title)
ax.legend()
ax.axis('off')
return fig
class ExperimentVisualizer:
"""Visualization tools for experiment results and comparisons."""
def __init__(self):
self.segmentation_visualizer = SegmentationVisualizer()
def plot_metrics_comparison(
self,
results: Dict[str, List[float]],
metric_name: str = "IoU",
title: str = "Metrics Comparison"
) -> plt.Figure:
"""Plot comparison of metrics across different methods/strategies."""
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
# Prepare data
methods = list(results.keys())
values = [np.mean(results[method]) for method in methods]
errors = [np.std(results[method]) for method in methods]
# Create bar plot
bars = ax.bar(methods, values, yerr=errors, capsize=5, alpha=0.7)
# Add value labels on bars
for bar, value in zip(bars, values):
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{value:.3f}', ha='center', va='bottom')
ax.set_title(title)
ax.set_ylabel(metric_name)
ax.set_xlabel("Methods")
ax.grid(True, alpha=0.3)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
def plot_learning_curves(
self,
episode_metrics: List[Dict[str, float]],
metric_name: str = "iou"
) -> plt.Figure:
"""Plot learning curves over episodes."""
fig, ax = plt.subplots(1, 1, figsize=(12, 6))
# Extract metric values
episodes = range(1, len(episode_metrics) + 1)
values = [ep.get(metric_name, 0) for ep in episode_metrics]
# Plot learning curve
ax.plot(episodes, values, 'b-', linewidth=2, label=f'{metric_name.upper()}')
# Add moving average
window_size = min(10, len(values) // 4)
if window_size > 1:
moving_avg = np.convolve(values, np.ones(window_size)/window_size, mode='valid')
ax.plot(episodes[window_size-1:], moving_avg, 'r--', linewidth=2,
label=f'Moving Average (window={window_size})')
ax.set_title(f"Learning Curve - {metric_name.upper()}")
ax.set_xlabel("Episode")
ax.set_ylabel(metric_name.upper())
ax.grid(True, alpha=0.3)
ax.legend()
plt.tight_layout()
return fig
def plot_shot_analysis(
self,
shot_results: Dict[int, List[float]],
metric_name: str = "iou"
) -> plt.Figure:
"""Plot performance analysis across different numbers of shots."""
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
# Prepare data
shots = sorted(shot_results.keys())
means = [np.mean(shot_results[shot]) for shot in shots]
stds = [np.std(shot_results[shot]) for shot in shots]
# Create line plot with error bars
ax.errorbar(shots, means, yerr=stds, marker='o', linewidth=2,
capsize=5, capthick=2)
ax.set_title(f"Performance vs Number of Shots - {metric_name.upper()}")
ax.set_xlabel("Number of Shots")
ax.set_ylabel(f"Mean {metric_name.upper()}")
ax.grid(True, alpha=0.3)
plt.tight_layout()
return fig
def plot_prompt_strategy_comparison(
self,
strategy_results: Dict[str, Dict[str, float]],
metric_name: str = "mean_iou"
) -> plt.Figure:
"""Plot comparison of different prompt strategies."""
fig, ax = plt.subplots(1, 1, figsize=(12, 6))
# Prepare data
strategies = list(strategy_results.keys())
values = [strategy_results[s].get(metric_name, 0) for s in strategies]
errors = [strategy_results[s].get(f'std_{metric_name.split("_")[-1]}', 0)
for s in strategies]
# Create bar plot
bars = ax.bar(strategies, values, yerr=errors, capsize=5, alpha=0.7)
# Add value labels
for bar, value in zip(bars, values):
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{value:.3f}', ha='center', va='bottom')
ax.set_title(f"Prompt Strategy Comparison - {metric_name}")
ax.set_ylabel(metric_name.replace('_', ' ').title())
ax.set_xlabel("Strategy")
ax.grid(True, alpha=0.3)
plt.xticks(rotation=45)
plt.tight_layout()
return fig
def create_comprehensive_report(
self,
experiment_results: Dict,
output_dir: str,
experiment_name: str = "experiment"
):
"""Create a comprehensive visualization report."""
os.makedirs(output_dir, exist_ok=True)
# Create summary plots
if 'episode_metrics' in experiment_results:
# Learning curves
for metric in ['iou', 'dice', 'precision', 'recall']:
fig = self.plot_learning_curves(
experiment_results['episode_metrics'],
metric
)
fig.savefig(os.path.join(output_dir, f'{experiment_name}_learning_curve_{metric}.png'))
plt.close(fig)
if 'class_metrics' in experiment_results:
# Class-wise performance
class_results = experiment_results['class_metrics']
for class_name, metrics in class_results.items():
if isinstance(metrics, list):
fig = self.plot_learning_curves(metrics, 'iou')
fig.savefig(os.path.join(output_dir, f'{experiment_name}_class_{class_name}.png'))
plt.close(fig)
if 'shot_analysis' in experiment_results:
# Shot analysis
for metric in ['iou', 'dice']:
fig = self.plot_shot_analysis(
experiment_results['shot_analysis'],
metric
)
fig.savefig(os.path.join(output_dir, f'{experiment_name}_shot_analysis_{metric}.png'))
plt.close(fig)
if 'strategy_comparison' in experiment_results:
# Strategy comparison
for metric in ['mean_iou', 'mean_dice']:
fig = self.plot_prompt_strategy_comparison(
experiment_results['strategy_comparison'],
metric
)
fig.savefig(os.path.join(output_dir, f'{experiment_name}_strategy_comparison_{metric}.png'))
plt.close(fig)
print(f"Comprehensive report saved to {output_dir}")
class AttentionVisualizer:
"""Specialized visualizer for attention mechanisms."""
def __init__(self):
self.segmentation_visualizer = SegmentationVisualizer()
def visualize_cross_attention(
self,
image: torch.Tensor,
text_tokens: List[str],
attention_weights: torch.Tensor,
title: str = "Cross-Attention Visualization"
) -> plt.Figure:
"""Visualize cross-attention between image and text tokens."""
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
# Original image
image_np = image.permute(1, 2, 0).cpu().numpy()
if image_np.min() < 0 or image_np.max() > 1:
image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
axes[0, 0].imshow(image_np)
axes[0, 0].set_title("Original Image")
axes[0, 0].axis('off')
# Text tokens
axes[0, 1].text(0.1, 0.5, '\n'.join(text_tokens), fontsize=12,
verticalalignment='center')
axes[0, 1].set_title("Text Tokens")
axes[0, 1].axis('off')
# Attention heatmap
attention_np = attention_weights.cpu().numpy()
sns.heatmap(attention_np, ax=axes[1, 0], cmap='viridis')
axes[1, 0].set_title("Attention Heatmap")
axes[1, 0].set_xlabel("Text Tokens")
axes[1, 0].set_ylabel("Image Patches")
# Attention overlay on image
# Resize attention to image size
attention_map = np.mean(attention_np, axis=1)
attention_map = attention_map.reshape(int(np.sqrt(len(attention_map))), -1)
attention_map = cv2.resize(attention_map, (image_np.shape[1], image_np.shape[0]))
axes[1, 1].imshow(image_np)
axes[1, 1].imshow(attention_map, alpha=0.6, cmap='hot')
axes[1, 1].set_title("Attention Overlay")
axes[1, 1].axis('off')
plt.tight_layout()
return fig