File size: 17,278 Bytes
12fa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""
Visualization Utilities

This module provides comprehensive visualization tools for segmentation results,
attention maps, and experiment comparisons in few-shot and zero-shot learning.
"""

import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.colors import ListedColormap
import seaborn as sns
from typing import Dict, List, Tuple, Optional, Union
import cv2
from PIL import Image
import os


class SegmentationVisualizer:
    """Visualization tools for segmentation results."""
    
    def __init__(self, figsize: Tuple[int, int] = (15, 10)):
        self.figsize = figsize
        
        # Color maps for different classes
        self.class_colors = {
            'building': [1.0, 0.0, 0.0],      # Red
            'road': [0.0, 1.0, 0.0],          # Green
            'vegetation': [0.0, 0.0, 1.0],    # Blue
            'water': [1.0, 1.0, 0.0],         # Yellow
            'shirt': [1.0, 0.5, 0.0],         # Orange
            'pants': [0.5, 0.0, 1.0],         # Purple
            'dress': [0.0, 1.0, 1.0],         # Cyan
            'shoes': [1.0, 0.0, 1.0],         # Magenta
            'robot': [0.5, 0.5, 0.5],         # Gray
            'tool': [0.8, 0.4, 0.2],          # Brown
            'safety': [0.2, 0.8, 0.2]         # Light Green
        }
    
    def visualize_segmentation(
        self, 
        image: torch.Tensor, 
        predictions: Dict[str, torch.Tensor], 
        ground_truth: Optional[Dict[str, torch.Tensor]] = None,
        title: str = "Segmentation Results"
    ) -> plt.Figure:
        """Visualize segmentation results with optional ground truth comparison."""
        num_classes = len(predictions)
        has_gt = ground_truth is not None
        
        # Calculate subplot layout
        if has_gt:
            cols = 3
            rows = max(2, num_classes)
        else:
            cols = 2
            rows = max(1, num_classes)
        
        fig, axes = plt.subplots(rows, cols, figsize=(cols * 5, rows * 4))
        if rows == 1:
            axes = axes.reshape(1, -1)
        
        # Original image
        image_np = image.permute(1, 2, 0).cpu().numpy()
        # Denormalize if needed
        if image_np.min() < 0 or image_np.max() > 1:
            image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
        
        axes[0, 0].imshow(image_np)
        axes[0, 0].set_title("Original Image")
        axes[0, 0].axis('off')
        
        # Combined prediction overlay
        if cols > 1:
            combined_pred = self.create_combined_mask(predictions)
            axes[0, 1].imshow(image_np)
            axes[0, 1].imshow(combined_pred, alpha=0.6, cmap='tab10')
            axes[0, 1].set_title("Combined Predictions")
            axes[0, 1].axis('off')
        
        # Ground truth overlay
        if has_gt and cols > 2:
            combined_gt = self.create_combined_mask(ground_truth)
            axes[0, 2].imshow(image_np)
            axes[0, 2].imshow(combined_gt, alpha=0.6, cmap='tab10')
            axes[0, 2].set_title("Ground Truth")
            axes[0, 2].axis('off')
        
        # Individual class predictions
        for i, (class_name, pred_mask) in enumerate(predictions.items()):
            row = i + 1 if has_gt else i
            col_offset = 0
            
            # Prediction mask
            pred_np = pred_mask.cpu().numpy()
            axes[row, col_offset].imshow(pred_np, cmap='gray')
            axes[row, col_offset].set_title(f"Prediction: {class_name}")
            axes[row, col_offset].axis('off')
            
            # Overlay on original image
            col_offset += 1
            axes[row, col_offset].imshow(image_np)
            axes[row, col_offset].imshow(pred_np, alpha=0.6, cmap='Reds')
            axes[row, col_offset].set_title(f"Overlay: {class_name}")
            axes[row, col_offset].axis('off')
            
            # Ground truth comparison
            if has_gt and class_name in ground_truth:
                col_offset += 1
                gt_mask = ground_truth[class_name]
                gt_np = gt_mask.cpu().numpy()
                
                # Create comparison visualization
                comparison = np.zeros((*gt_np.shape, 3))
                comparison[gt_np > 0.5] = [0, 1, 0]  # Green for ground truth
                comparison[pred_np > 0.5] = [1, 0, 0]  # Red for prediction
                comparison[(gt_np > 0.5) & (pred_np > 0.5)] = [1, 1, 0]  # Yellow for overlap
                
                axes[row, col_offset].imshow(image_np)
                axes[row, col_offset].imshow(comparison, alpha=0.6)
                axes[row, col_offset].set_title(f"Comparison: {class_name}")
                axes[row, col_offset].axis('off')
        
        plt.tight_layout()
        return fig
    
    def create_combined_mask(self, masks: Dict[str, torch.Tensor]) -> np.ndarray:
        """Create a combined mask visualization for multiple classes."""
        if not masks:
            return np.zeros((512, 512))
        
        # Get the shape from the first mask
        first_mask = list(masks.values())[0]
        combined = np.zeros((*first_mask.shape, 3))
        
        for i, (class_name, mask) in enumerate(masks.items()):
            mask_np = mask.cpu().numpy()
            color = self.class_colors.get(class_name, [1, 1, 1])
            
            # Apply color to mask
            for c in range(3):
                combined[:, :, c] += mask_np * color[c]
        
        # Normalize
        combined = np.clip(combined, 0, 1)
        return combined
    
    def visualize_attention_maps(
        self, 
        image: torch.Tensor, 
        attention_maps: torch.Tensor, 
        class_names: List[str],
        title: str = "Attention Maps"
    ) -> plt.Figure:
        """Visualize attention maps for different classes."""
        num_classes = len(class_names)
        fig, axes = plt.subplots(2, num_classes, figsize=(num_classes * 4, 8))
        
        # Original image
        image_np = image.permute(1, 2, 0).cpu().numpy()
        if image_np.min() < 0 or image_np.max() > 1:
            image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
        
        for i in range(num_classes):
            axes[0, i].imshow(image_np)
            axes[0, i].set_title(f"Original - {class_names[i]}")
            axes[0, i].axis('off')
        
        # Attention maps
        attention_np = attention_maps.cpu().numpy()
        for i in range(min(num_classes, attention_np.shape[0])):
            attention_map = attention_np[i]
            
            # Resize attention map to image size
            attention_map = cv2.resize(attention_map, (image_np.shape[1], image_np.shape[0]))
            
            axes[1, i].imshow(attention_map, cmap='hot')
            axes[1, i].set_title(f"Attention - {class_names[i]}")
            axes[1, i].axis('off')
        
        plt.tight_layout()
        return fig
    
    def visualize_prompt_points(
        self, 
        image: torch.Tensor, 
        prompts: List[Dict],
        title: str = "Prompt Points"
    ) -> plt.Figure:
        """Visualize prompt points and boxes on the image."""
        fig, ax = plt.subplots(1, 1, figsize=(10, 10))
        
        # Original image
        image_np = image.permute(1, 2, 0).cpu().numpy()
        if image_np.min() < 0 or image_np.max() > 1:
            image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
        
        ax.imshow(image_np)
        
        # Plot prompts
        colors = plt.cm.Set3(np.linspace(0, 1, len(prompts)))
        
        for i, prompt in enumerate(prompts):
            color = colors[i]
            
            if prompt['type'] == 'point':
                x, y = prompt['data']
                ax.scatter(x, y, c=[color], s=100, marker='o', 
                          label=f"{prompt['class']} (point)")
                
            elif prompt['type'] == 'box':
                x1, y1, x2, y2 = prompt['data']
                rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, 
                                       linewidth=2, edgecolor=color, 
                                       facecolor='none', 
                                       label=f"{prompt['class']} (box)")
                ax.add_patch(rect)
        
        ax.set_title(title)
        ax.legend()
        ax.axis('off')
        
        return fig


class ExperimentVisualizer:
    """Visualization tools for experiment results and comparisons."""
    
    def __init__(self):
        self.segmentation_visualizer = SegmentationVisualizer()
    
    def plot_metrics_comparison(
        self, 
        results: Dict[str, List[float]], 
        metric_name: str = "IoU",
        title: str = "Metrics Comparison"
    ) -> plt.Figure:
        """Plot comparison of metrics across different methods/strategies."""
        fig, ax = plt.subplots(1, 1, figsize=(10, 6))
        
        # Prepare data
        methods = list(results.keys())
        values = [np.mean(results[method]) for method in methods]
        errors = [np.std(results[method]) for method in methods]
        
        # Create bar plot
        bars = ax.bar(methods, values, yerr=errors, capsize=5, alpha=0.7)
        
        # Add value labels on bars
        for bar, value in zip(bars, values):
            height = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
                   f'{value:.3f}', ha='center', va='bottom')
        
        ax.set_title(title)
        ax.set_ylabel(metric_name)
        ax.set_xlabel("Methods")
        ax.grid(True, alpha=0.3)
        
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        return fig
    
    def plot_learning_curves(
        self, 
        episode_metrics: List[Dict[str, float]], 
        metric_name: str = "iou"
    ) -> plt.Figure:
        """Plot learning curves over episodes."""
        fig, ax = plt.subplots(1, 1, figsize=(12, 6))
        
        # Extract metric values
        episodes = range(1, len(episode_metrics) + 1)
        values = [ep.get(metric_name, 0) for ep in episode_metrics]
        
        # Plot learning curve
        ax.plot(episodes, values, 'b-', linewidth=2, label=f'{metric_name.upper()}')
        
        # Add moving average
        window_size = min(10, len(values) // 4)
        if window_size > 1:
            moving_avg = np.convolve(values, np.ones(window_size)/window_size, mode='valid')
            ax.plot(episodes[window_size-1:], moving_avg, 'r--', linewidth=2, 
                   label=f'Moving Average (window={window_size})')
        
        ax.set_title(f"Learning Curve - {metric_name.upper()}")
        ax.set_xlabel("Episode")
        ax.set_ylabel(metric_name.upper())
        ax.grid(True, alpha=0.3)
        ax.legend()
        
        plt.tight_layout()
        return fig
    
    def plot_shot_analysis(
        self, 
        shot_results: Dict[int, List[float]], 
        metric_name: str = "iou"
    ) -> plt.Figure:
        """Plot performance analysis across different numbers of shots."""
        fig, ax = plt.subplots(1, 1, figsize=(10, 6))
        
        # Prepare data
        shots = sorted(shot_results.keys())
        means = [np.mean(shot_results[shot]) for shot in shots]
        stds = [np.std(shot_results[shot]) for shot in shots]
        
        # Create line plot with error bars
        ax.errorbar(shots, means, yerr=stds, marker='o', linewidth=2, 
                   capsize=5, capthick=2)
        
        ax.set_title(f"Performance vs Number of Shots - {metric_name.upper()}")
        ax.set_xlabel("Number of Shots")
        ax.set_ylabel(f"Mean {metric_name.upper()}")
        ax.grid(True, alpha=0.3)
        
        plt.tight_layout()
        return fig
    
    def plot_prompt_strategy_comparison(
        self, 
        strategy_results: Dict[str, Dict[str, float]], 
        metric_name: str = "mean_iou"
    ) -> plt.Figure:
        """Plot comparison of different prompt strategies."""
        fig, ax = plt.subplots(1, 1, figsize=(12, 6))
        
        # Prepare data
        strategies = list(strategy_results.keys())
        values = [strategy_results[s].get(metric_name, 0) for s in strategies]
        errors = [strategy_results[s].get(f'std_{metric_name.split("_")[-1]}', 0) 
                 for s in strategies]
        
        # Create bar plot
        bars = ax.bar(strategies, values, yerr=errors, capsize=5, alpha=0.7)
        
        # Add value labels
        for bar, value in zip(bars, values):
            height = bar.get_height()
            ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
                   f'{value:.3f}', ha='center', va='bottom')
        
        ax.set_title(f"Prompt Strategy Comparison - {metric_name}")
        ax.set_ylabel(metric_name.replace('_', ' ').title())
        ax.set_xlabel("Strategy")
        ax.grid(True, alpha=0.3)
        
        plt.xticks(rotation=45)
        plt.tight_layout()
        
        return fig
    
    def create_comprehensive_report(
        self, 
        experiment_results: Dict,
        output_dir: str,
        experiment_name: str = "experiment"
    ):
        """Create a comprehensive visualization report."""
        os.makedirs(output_dir, exist_ok=True)
        
        # Create summary plots
        if 'episode_metrics' in experiment_results:
            # Learning curves
            for metric in ['iou', 'dice', 'precision', 'recall']:
                fig = self.plot_learning_curves(
                    experiment_results['episode_metrics'], 
                    metric
                )
                fig.savefig(os.path.join(output_dir, f'{experiment_name}_learning_curve_{metric}.png'))
                plt.close(fig)
        
        if 'class_metrics' in experiment_results:
            # Class-wise performance
            class_results = experiment_results['class_metrics']
            for class_name, metrics in class_results.items():
                if isinstance(metrics, list):
                    fig = self.plot_learning_curves(metrics, 'iou')
                    fig.savefig(os.path.join(output_dir, f'{experiment_name}_class_{class_name}.png'))
                    plt.close(fig)
        
        if 'shot_analysis' in experiment_results:
            # Shot analysis
            for metric in ['iou', 'dice']:
                fig = self.plot_shot_analysis(
                    experiment_results['shot_analysis'], 
                    metric
                )
                fig.savefig(os.path.join(output_dir, f'{experiment_name}_shot_analysis_{metric}.png'))
                plt.close(fig)
        
        if 'strategy_comparison' in experiment_results:
            # Strategy comparison
            for metric in ['mean_iou', 'mean_dice']:
                fig = self.plot_prompt_strategy_comparison(
                    experiment_results['strategy_comparison'], 
                    metric
                )
                fig.savefig(os.path.join(output_dir, f'{experiment_name}_strategy_comparison_{metric}.png'))
                plt.close(fig)
        
        print(f"Comprehensive report saved to {output_dir}")


class AttentionVisualizer:
    """Specialized visualizer for attention mechanisms."""
    
    def __init__(self):
        self.segmentation_visualizer = SegmentationVisualizer()
    
    def visualize_cross_attention(
        self, 
        image: torch.Tensor, 
        text_tokens: List[str], 
        attention_weights: torch.Tensor,
        title: str = "Cross-Attention Visualization"
    ) -> plt.Figure:
        """Visualize cross-attention between image and text tokens."""
        fig, axes = plt.subplots(2, 2, figsize=(15, 12))
        
        # Original image
        image_np = image.permute(1, 2, 0).cpu().numpy()
        if image_np.min() < 0 or image_np.max() > 1:
            image_np = (image_np - image_np.min()) / (image_np.max() - image_np.min())
        
        axes[0, 0].imshow(image_np)
        axes[0, 0].set_title("Original Image")
        axes[0, 0].axis('off')
        
        # Text tokens
        axes[0, 1].text(0.1, 0.5, '\n'.join(text_tokens), fontsize=12, 
                       verticalalignment='center')
        axes[0, 1].set_title("Text Tokens")
        axes[0, 1].axis('off')
        
        # Attention heatmap
        attention_np = attention_weights.cpu().numpy()
        sns.heatmap(attention_np, ax=axes[1, 0], cmap='viridis')
        axes[1, 0].set_title("Attention Heatmap")
        axes[1, 0].set_xlabel("Text Tokens")
        axes[1, 0].set_ylabel("Image Patches")
        
        # Attention overlay on image
        # Resize attention to image size
        attention_map = np.mean(attention_np, axis=1)
        attention_map = attention_map.reshape(int(np.sqrt(len(attention_map))), -1)
        attention_map = cv2.resize(attention_map, (image_np.shape[1], image_np.shape[0]))
        
        axes[1, 1].imshow(image_np)
        axes[1, 1].imshow(attention_map, alpha=0.6, cmap='hot')
        axes[1, 1].set_title("Attention Overlay")
        axes[1, 1].axis('off')
        
        plt.tight_layout()
        return fig