Segmentation / experiments /zero_shot_fashion.py
Edwin Salguero
Initial commit: SAM 2 Few-Shot/Zero-Shot Segmentation Research Framework
12fa055
"""
Zero-Shot Fashion Segmentation Experiment
This experiment demonstrates zero-shot learning for fashion segmentation
using SAM 2 with advanced text prompting and attention mechanisms.
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import json
from typing import List, Dict, Tuple
import argparse
from tqdm import tqdm
# Add parent directory to path
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from models.sam2_zeroshot import SAM2ZeroShot, ZeroShotEvaluator
from utils.data_loader import FashionDataLoader
from utils.metrics import SegmentationMetrics
from utils.visualization import visualize_segmentation
class FashionZeroShotExperiment:
"""Zero-shot learning experiment for fashion segmentation."""
def __init__(
self,
sam2_checkpoint: str,
data_dir: str,
output_dir: str,
device: str = "cuda",
use_attention_maps: bool = True,
temperature: float = 0.1
):
self.device = device
self.output_dir = output_dir
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Initialize model
self.model = SAM2ZeroShot(
sam2_checkpoint=sam2_checkpoint,
device=device,
use_attention_maps=use_attention_maps,
temperature=temperature
)
# Initialize evaluator
self.evaluator = ZeroShotEvaluator()
# Initialize data loader
self.data_loader = FashionDataLoader(data_dir)
# Initialize metrics
self.metrics = SegmentationMetrics()
# Fashion-specific classes
self.classes = ["shirt", "pants", "dress", "shoes"]
# Prompt strategies to test
self.prompt_strategies = [
"basic", # Simple class names
"descriptive", # Enhanced descriptions
"contextual", # Context-aware prompts
"detailed" # Detailed descriptions
]
def run_single_experiment(
self,
image: torch.Tensor,
ground_truth: Dict[str, torch.Tensor],
strategy: str = "descriptive"
) -> Dict:
"""Run a single zero-shot experiment."""
# Perform segmentation
predictions = self.model.segment(image, "fashion", self.classes)
# Evaluate results
evaluation = self.evaluator.evaluate(predictions, ground_truth)
return {
'predictions': predictions,
'evaluation': evaluation,
'strategy': strategy
}
def run_comparative_experiment(
self,
num_images: int = 50
) -> Dict:
"""Run comparative experiment with different prompt strategies."""
results = {
'strategies': {strategy: [] for strategy in self.prompt_strategies},
'overall_comparison': {},
'class_analysis': {cls: {strategy: [] for strategy in self.prompt_strategies}
for cls in self.classes}
}
print(f"Running comparative zero-shot experiment on {num_images} images...")
for i in tqdm(range(num_images)):
# Load test image and ground truth
image, ground_truth = self.data_loader.get_test_sample()
# Test each strategy
for strategy in self.prompt_strategies:
# Modify model's prompt strategy for this experiment
if strategy == "basic":
# Use simple prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["shirt"],
"pants": ["pants"],
"dress": ["dress"],
"shoes": ["shoes"]
}
elif strategy == "descriptive":
# Use descriptive prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["fashion photography of shirts", "clothing item top"],
"pants": ["fashion photography of pants", "lower body clothing"],
"dress": ["fashion photography of dresses", "full body garment"],
"shoes": ["fashion photography of shoes", "footwear item"]
}
elif strategy == "contextual":
# Use contextual prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["in a fashion setting, shirt", "worn by a person, shirt"],
"pants": ["in a fashion setting, pants", "worn by a person, pants"],
"dress": ["in a fashion setting, dress", "worn by a person, dress"],
"shoes": ["in a fashion setting, shoes", "worn by a person, shoes"]
}
elif strategy == "detailed":
# Use detailed prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["high quality fashion photograph of a shirt with clear details",
"professional clothing photography showing shirt"],
"pants": ["high quality fashion photograph of pants with clear details",
"professional clothing photography showing pants"],
"dress": ["high quality fashion photograph of a dress with clear details",
"professional clothing photography showing dress"],
"shoes": ["high quality fashion photograph of shoes with clear details",
"professional clothing photography showing shoes"]
}
# Run experiment
experiment_result = self.run_single_experiment(image, ground_truth, strategy)
# Store results
results['strategies'][strategy].append(experiment_result['evaluation'])
# Store class-specific results
for class_name in self.classes:
iou_key = f"{class_name}_iou"
dice_key = f"{class_name}_dice"
if iou_key in experiment_result['evaluation']:
results['class_analysis'][class_name][strategy].append({
'iou': experiment_result['evaluation'][iou_key],
'dice': experiment_result['evaluation'][dice_key]
})
# Visualize every 10 images
if i % 10 == 0:
self.visualize_comparison(
i, image, ground_truth,
{s: results['strategies'][s][-1] for s in self.prompt_strategies},
strategy
)
# Compute overall comparison
for strategy in self.prompt_strategies:
strategy_results = results['strategies'][strategy]
if strategy_results:
results['overall_comparison'][strategy] = {
'mean_iou': np.mean([r.get('mean_iou', 0) for r in strategy_results]),
'mean_dice': np.mean([r.get('mean_dice', 0) for r in strategy_results]),
'std_iou': np.std([r.get('mean_iou', 0) for r in strategy_results]),
'std_dice': np.std([r.get('mean_dice', 0) for r in strategy_results])
}
return results
def run_attention_analysis(self, num_images: int = 20) -> Dict:
"""Run analysis of attention-based prompt generation."""
results = {
'with_attention': [],
'without_attention': [],
'attention_points': []
}
print(f"Running attention analysis on {num_images} images...")
for i in tqdm(range(num_images)):
# Load test image and ground truth
image, ground_truth = self.data_loader.get_test_sample()
# Test with attention maps
self.model.use_attention_maps = True
with_attention = self.run_single_experiment(image, ground_truth, "attention")
# Test without attention maps
self.model.use_attention_maps = False
without_attention = self.run_single_experiment(image, ground_truth, "no_attention")
# Store results
results['with_attention'].append(with_attention['evaluation'])
results['without_attention'].append(without_attention['evaluation'])
# Analyze attention points
if with_attention['predictions']:
# Extract attention points (simplified)
attention_points = self.extract_attention_points(image, self.classes)
results['attention_points'].append(attention_points)
return results
def extract_attention_points(self, image: torch.Tensor, classes: List[str]) -> List[Tuple[int, int]]:
"""Extract attention points for visualization."""
# Simplified attention point extraction
h, w = image.shape[-2:]
points = []
for class_name in classes:
# Generate some sample points (in practice, these would come from attention maps)
center_x, center_y = w // 2, h // 2
points.append((center_x, center_y))
# Add some variation
points.append((center_x + w // 4, center_y))
points.append((center_x, center_y + h // 4))
return points
def visualize_comparison(
self,
image_idx: int,
image: torch.Tensor,
ground_truth: Dict[str, torch.Tensor],
strategy_results: Dict,
best_strategy: str
):
"""Visualize comparison between different strategies."""
fig, axes = plt.subplots(3, 4, figsize=(20, 15))
# Original image
axes[0, 0].imshow(image.permute(1, 2, 0).cpu().numpy())
axes[0, 0].set_title("Original Image")
axes[0, 0].axis('off')
# Ground truth
for i, class_name in enumerate(self.classes):
if class_name in ground_truth:
axes[0, i+1].imshow(ground_truth[class_name].cpu().numpy(), cmap='gray')
axes[0, i+1].set_title(f"GT: {class_name}")
axes[0, i+1].axis('off')
# Best strategy predictions
best_result = strategy_results[best_strategy]
for i, class_name in enumerate(self.classes):
if class_name in best_result:
axes[1, i].imshow(best_result[class_name].cpu().numpy(), cmap='gray')
axes[1, i].set_title(f"Best: {class_name}")
axes[1, i].axis('off')
# Strategy comparison
strategies = list(strategy_results.keys())
metrics = ['mean_iou', 'mean_dice']
for i, metric in enumerate(metrics):
values = [strategy_results[s].get(metric, 0) for s in strategies]
axes[2, i].bar(strategies, values)
axes[2, i].set_title(f"{metric.replace('_', ' ').title()}")
axes[2, i].tick_params(axis='x', rotation=45)
# Add text summary
summary_text = f"Best Strategy: {best_strategy}\n"
for strategy, result in strategy_results.items():
summary_text += f"{strategy}: IoU={result.get('mean_iou', 0):.3f}, Dice={result.get('mean_dice', 0):.3f}\n"
axes[2, 2].text(0.1, 0.5, summary_text, transform=axes[2, 2].transAxes,
verticalalignment='center', fontsize=10)
axes[2, 2].axis('off')
axes[2, 3].axis('off')
plt.tight_layout()
plt.savefig(os.path.join(self.output_dir, f"comparison_{image_idx}.png"))
plt.close()
def save_results(self, results: Dict, experiment_type: str = "comparative"):
"""Save experiment results."""
# Save detailed results
with open(os.path.join(self.output_dir, f'{experiment_type}_results.json'), 'w') as f:
json.dump(results, f, indent=2)
# Save summary
if experiment_type == "comparative":
summary = {
'experiment_type': experiment_type,
'num_images': len(results['strategies'][list(results['strategies'].keys())[0]]),
'overall_comparison': results['overall_comparison'],
'best_strategy': max(results['overall_comparison'].items(),
key=lambda x: x[1]['mean_iou'])[0]
}
else:
summary = {
'experiment_type': experiment_type,
'attention_analysis': {
'with_attention_mean_iou': np.mean([r.get('mean_iou', 0) for r in results['with_attention']]),
'without_attention_mean_iou': np.mean([r.get('mean_iou', 0) for r in results['without_attention']]),
'attention_improvement': np.mean([r.get('mean_iou', 0) for r in results['with_attention']]) -
np.mean([r.get('mean_iou', 0) for r in results['without_attention']])
}
}
with open(os.path.join(self.output_dir, f'{experiment_type}_summary.json'), 'w') as f:
json.dump(summary, f, indent=2)
print(f"Results saved to {self.output_dir}")
if experiment_type == "comparative":
print(f"Best strategy: {summary['best_strategy']}")
print(f"Best mean IoU: {summary['overall_comparison'][summary['best_strategy']]['mean_iou']:.3f}")
def main():
parser = argparse.ArgumentParser(description="Zero-shot fashion segmentation experiment")
parser.add_argument("--sam2_checkpoint", type=str, required=True, help="Path to SAM 2 checkpoint")
parser.add_argument("--data_dir", type=str, required=True, help="Path to fashion dataset")
parser.add_argument("--output_dir", type=str, default="results/zero_shot_fashion", help="Output directory")
parser.add_argument("--num_images", type=int, default=50, help="Number of test images")
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
parser.add_argument("--experiment_type", type=str, default="comparative",
choices=["comparative", "attention"], help="Type of experiment")
parser.add_argument("--temperature", type=float, default=0.1, help="CLIP temperature")
args = parser.parse_args()
# Run experiment
experiment = FashionZeroShotExperiment(
sam2_checkpoint=args.sam2_checkpoint,
data_dir=args.data_dir,
output_dir=args.output_dir,
device=args.device,
temperature=args.temperature
)
if args.experiment_type == "comparative":
results = experiment.run_comparative_experiment(num_images=args.num_images)
else:
results = experiment.run_attention_analysis(num_images=args.num_images)
experiment.save_results(results, args.experiment_type)
if __name__ == "__main__":
main()