File size: 15,487 Bytes
12fa055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
"""
Zero-Shot Fashion Segmentation Experiment
This experiment demonstrates zero-shot learning for fashion segmentation
using SAM 2 with advanced text prompting and attention mechanisms.
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import json
from typing import List, Dict, Tuple
import argparse
from tqdm import tqdm
# Add parent directory to path
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from models.sam2_zeroshot import SAM2ZeroShot, ZeroShotEvaluator
from utils.data_loader import FashionDataLoader
from utils.metrics import SegmentationMetrics
from utils.visualization import visualize_segmentation
class FashionZeroShotExperiment:
"""Zero-shot learning experiment for fashion segmentation."""
def __init__(
self,
sam2_checkpoint: str,
data_dir: str,
output_dir: str,
device: str = "cuda",
use_attention_maps: bool = True,
temperature: float = 0.1
):
self.device = device
self.output_dir = output_dir
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Initialize model
self.model = SAM2ZeroShot(
sam2_checkpoint=sam2_checkpoint,
device=device,
use_attention_maps=use_attention_maps,
temperature=temperature
)
# Initialize evaluator
self.evaluator = ZeroShotEvaluator()
# Initialize data loader
self.data_loader = FashionDataLoader(data_dir)
# Initialize metrics
self.metrics = SegmentationMetrics()
# Fashion-specific classes
self.classes = ["shirt", "pants", "dress", "shoes"]
# Prompt strategies to test
self.prompt_strategies = [
"basic", # Simple class names
"descriptive", # Enhanced descriptions
"contextual", # Context-aware prompts
"detailed" # Detailed descriptions
]
def run_single_experiment(
self,
image: torch.Tensor,
ground_truth: Dict[str, torch.Tensor],
strategy: str = "descriptive"
) -> Dict:
"""Run a single zero-shot experiment."""
# Perform segmentation
predictions = self.model.segment(image, "fashion", self.classes)
# Evaluate results
evaluation = self.evaluator.evaluate(predictions, ground_truth)
return {
'predictions': predictions,
'evaluation': evaluation,
'strategy': strategy
}
def run_comparative_experiment(
self,
num_images: int = 50
) -> Dict:
"""Run comparative experiment with different prompt strategies."""
results = {
'strategies': {strategy: [] for strategy in self.prompt_strategies},
'overall_comparison': {},
'class_analysis': {cls: {strategy: [] for strategy in self.prompt_strategies}
for cls in self.classes}
}
print(f"Running comparative zero-shot experiment on {num_images} images...")
for i in tqdm(range(num_images)):
# Load test image and ground truth
image, ground_truth = self.data_loader.get_test_sample()
# Test each strategy
for strategy in self.prompt_strategies:
# Modify model's prompt strategy for this experiment
if strategy == "basic":
# Use simple prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["shirt"],
"pants": ["pants"],
"dress": ["dress"],
"shoes": ["shoes"]
}
elif strategy == "descriptive":
# Use descriptive prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["fashion photography of shirts", "clothing item top"],
"pants": ["fashion photography of pants", "lower body clothing"],
"dress": ["fashion photography of dresses", "full body garment"],
"shoes": ["fashion photography of shoes", "footwear item"]
}
elif strategy == "contextual":
# Use contextual prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["in a fashion setting, shirt", "worn by a person, shirt"],
"pants": ["in a fashion setting, pants", "worn by a person, pants"],
"dress": ["in a fashion setting, dress", "worn by a person, dress"],
"shoes": ["in a fashion setting, shoes", "worn by a person, shoes"]
}
elif strategy == "detailed":
# Use detailed prompts
self.model.advanced_prompts["fashion"] = {
"shirt": ["high quality fashion photograph of a shirt with clear details",
"professional clothing photography showing shirt"],
"pants": ["high quality fashion photograph of pants with clear details",
"professional clothing photography showing pants"],
"dress": ["high quality fashion photograph of a dress with clear details",
"professional clothing photography showing dress"],
"shoes": ["high quality fashion photograph of shoes with clear details",
"professional clothing photography showing shoes"]
}
# Run experiment
experiment_result = self.run_single_experiment(image, ground_truth, strategy)
# Store results
results['strategies'][strategy].append(experiment_result['evaluation'])
# Store class-specific results
for class_name in self.classes:
iou_key = f"{class_name}_iou"
dice_key = f"{class_name}_dice"
if iou_key in experiment_result['evaluation']:
results['class_analysis'][class_name][strategy].append({
'iou': experiment_result['evaluation'][iou_key],
'dice': experiment_result['evaluation'][dice_key]
})
# Visualize every 10 images
if i % 10 == 0:
self.visualize_comparison(
i, image, ground_truth,
{s: results['strategies'][s][-1] for s in self.prompt_strategies},
strategy
)
# Compute overall comparison
for strategy in self.prompt_strategies:
strategy_results = results['strategies'][strategy]
if strategy_results:
results['overall_comparison'][strategy] = {
'mean_iou': np.mean([r.get('mean_iou', 0) for r in strategy_results]),
'mean_dice': np.mean([r.get('mean_dice', 0) for r in strategy_results]),
'std_iou': np.std([r.get('mean_iou', 0) for r in strategy_results]),
'std_dice': np.std([r.get('mean_dice', 0) for r in strategy_results])
}
return results
def run_attention_analysis(self, num_images: int = 20) -> Dict:
"""Run analysis of attention-based prompt generation."""
results = {
'with_attention': [],
'without_attention': [],
'attention_points': []
}
print(f"Running attention analysis on {num_images} images...")
for i in tqdm(range(num_images)):
# Load test image and ground truth
image, ground_truth = self.data_loader.get_test_sample()
# Test with attention maps
self.model.use_attention_maps = True
with_attention = self.run_single_experiment(image, ground_truth, "attention")
# Test without attention maps
self.model.use_attention_maps = False
without_attention = self.run_single_experiment(image, ground_truth, "no_attention")
# Store results
results['with_attention'].append(with_attention['evaluation'])
results['without_attention'].append(without_attention['evaluation'])
# Analyze attention points
if with_attention['predictions']:
# Extract attention points (simplified)
attention_points = self.extract_attention_points(image, self.classes)
results['attention_points'].append(attention_points)
return results
def extract_attention_points(self, image: torch.Tensor, classes: List[str]) -> List[Tuple[int, int]]:
"""Extract attention points for visualization."""
# Simplified attention point extraction
h, w = image.shape[-2:]
points = []
for class_name in classes:
# Generate some sample points (in practice, these would come from attention maps)
center_x, center_y = w // 2, h // 2
points.append((center_x, center_y))
# Add some variation
points.append((center_x + w // 4, center_y))
points.append((center_x, center_y + h // 4))
return points
def visualize_comparison(
self,
image_idx: int,
image: torch.Tensor,
ground_truth: Dict[str, torch.Tensor],
strategy_results: Dict,
best_strategy: str
):
"""Visualize comparison between different strategies."""
fig, axes = plt.subplots(3, 4, figsize=(20, 15))
# Original image
axes[0, 0].imshow(image.permute(1, 2, 0).cpu().numpy())
axes[0, 0].set_title("Original Image")
axes[0, 0].axis('off')
# Ground truth
for i, class_name in enumerate(self.classes):
if class_name in ground_truth:
axes[0, i+1].imshow(ground_truth[class_name].cpu().numpy(), cmap='gray')
axes[0, i+1].set_title(f"GT: {class_name}")
axes[0, i+1].axis('off')
# Best strategy predictions
best_result = strategy_results[best_strategy]
for i, class_name in enumerate(self.classes):
if class_name in best_result:
axes[1, i].imshow(best_result[class_name].cpu().numpy(), cmap='gray')
axes[1, i].set_title(f"Best: {class_name}")
axes[1, i].axis('off')
# Strategy comparison
strategies = list(strategy_results.keys())
metrics = ['mean_iou', 'mean_dice']
for i, metric in enumerate(metrics):
values = [strategy_results[s].get(metric, 0) for s in strategies]
axes[2, i].bar(strategies, values)
axes[2, i].set_title(f"{metric.replace('_', ' ').title()}")
axes[2, i].tick_params(axis='x', rotation=45)
# Add text summary
summary_text = f"Best Strategy: {best_strategy}\n"
for strategy, result in strategy_results.items():
summary_text += f"{strategy}: IoU={result.get('mean_iou', 0):.3f}, Dice={result.get('mean_dice', 0):.3f}\n"
axes[2, 2].text(0.1, 0.5, summary_text, transform=axes[2, 2].transAxes,
verticalalignment='center', fontsize=10)
axes[2, 2].axis('off')
axes[2, 3].axis('off')
plt.tight_layout()
plt.savefig(os.path.join(self.output_dir, f"comparison_{image_idx}.png"))
plt.close()
def save_results(self, results: Dict, experiment_type: str = "comparative"):
"""Save experiment results."""
# Save detailed results
with open(os.path.join(self.output_dir, f'{experiment_type}_results.json'), 'w') as f:
json.dump(results, f, indent=2)
# Save summary
if experiment_type == "comparative":
summary = {
'experiment_type': experiment_type,
'num_images': len(results['strategies'][list(results['strategies'].keys())[0]]),
'overall_comparison': results['overall_comparison'],
'best_strategy': max(results['overall_comparison'].items(),
key=lambda x: x[1]['mean_iou'])[0]
}
else:
summary = {
'experiment_type': experiment_type,
'attention_analysis': {
'with_attention_mean_iou': np.mean([r.get('mean_iou', 0) for r in results['with_attention']]),
'without_attention_mean_iou': np.mean([r.get('mean_iou', 0) for r in results['without_attention']]),
'attention_improvement': np.mean([r.get('mean_iou', 0) for r in results['with_attention']]) -
np.mean([r.get('mean_iou', 0) for r in results['without_attention']])
}
}
with open(os.path.join(self.output_dir, f'{experiment_type}_summary.json'), 'w') as f:
json.dump(summary, f, indent=2)
print(f"Results saved to {self.output_dir}")
if experiment_type == "comparative":
print(f"Best strategy: {summary['best_strategy']}")
print(f"Best mean IoU: {summary['overall_comparison'][summary['best_strategy']]['mean_iou']:.3f}")
def main():
parser = argparse.ArgumentParser(description="Zero-shot fashion segmentation experiment")
parser.add_argument("--sam2_checkpoint", type=str, required=True, help="Path to SAM 2 checkpoint")
parser.add_argument("--data_dir", type=str, required=True, help="Path to fashion dataset")
parser.add_argument("--output_dir", type=str, default="results/zero_shot_fashion", help="Output directory")
parser.add_argument("--num_images", type=int, default=50, help="Number of test images")
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
parser.add_argument("--experiment_type", type=str, default="comparative",
choices=["comparative", "attention"], help="Type of experiment")
parser.add_argument("--temperature", type=float, default=0.1, help="CLIP temperature")
args = parser.parse_args()
# Run experiment
experiment = FashionZeroShotExperiment(
sam2_checkpoint=args.sam2_checkpoint,
data_dir=args.data_dir,
output_dir=args.output_dir,
device=args.device,
temperature=args.temperature
)
if args.experiment_type == "comparative":
results = experiment.run_comparative_experiment(num_images=args.num_images)
else:
results = experiment.run_attention_analysis(num_images=args.num_images)
experiment.save_results(results, args.experiment_type)
if __name__ == "__main__":
main() |