Segmentation / experiments /few_shot_satellite.py
Edwin Salguero
Initial commit: SAM 2 Few-Shot/Zero-Shot Segmentation Research Framework
12fa055
"""
Few-Shot Satellite Imagery Segmentation Experiment
This experiment demonstrates few-shot learning for satellite imagery segmentation
using SAM 2 with minimal labeled examples.
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import json
from typing import List, Dict, Tuple
import argparse
from tqdm import tqdm
# Add parent directory to path
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from models.sam2_fewshot import SAM2FewShot, FewShotTrainer
from utils.data_loader import SatelliteDataLoader
from utils.metrics import SegmentationMetrics
from utils.visualization import visualize_segmentation
class SatelliteFewShotExperiment:
"""Few-shot learning experiment for satellite imagery."""
def __init__(
self,
sam2_checkpoint: str,
data_dir: str,
output_dir: str,
device: str = "cuda",
num_shots: int = 5,
num_classes: int = 4
):
self.device = device
self.num_shots = num_shots
self.num_classes = num_classes
self.output_dir = output_dir
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Initialize model
self.model = SAM2FewShot(
sam2_checkpoint=sam2_checkpoint,
device=device,
prompt_engineering=True,
visual_similarity=True
)
# Initialize trainer
self.trainer = FewShotTrainer(self.model, learning_rate=1e-4)
# Initialize data loader
self.data_loader = SatelliteDataLoader(data_dir)
# Initialize metrics
self.metrics = SegmentationMetrics()
# Satellite-specific classes
self.classes = ["building", "road", "vegetation", "water"]
def load_support_examples(self, class_name: str) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Load support examples for a specific class."""
support_images, support_masks = [], []
# Load few examples for this class
examples = self.data_loader.get_class_examples(class_name, self.num_shots)
for example in examples:
image, mask = example
support_images.append(image)
support_masks.append(mask)
return support_images, support_masks
def run_episode(
self,
query_image: torch.Tensor,
query_mask: torch.Tensor,
class_name: str
) -> Dict:
"""Run a single few-shot episode."""
# Load support examples
support_images, support_masks = self.load_support_examples(class_name)
# Add support examples to model memory
for img, mask in zip(support_images, support_masks):
self.model.add_few_shot_example("satellite", class_name, img, mask)
# Perform segmentation
predictions = self.model.segment(
query_image,
"satellite",
[class_name],
use_few_shot=True
)
# Compute metrics
if class_name in predictions:
pred_mask = predictions[class_name]
metrics = self.metrics.compute_metrics(pred_mask, query_mask)
else:
metrics = {
'iou': 0.0,
'dice': 0.0,
'precision': 0.0,
'recall': 0.0
}
return {
'predictions': predictions,
'metrics': metrics,
'support_images': support_images,
'support_masks': support_masks
}
def run_experiment(self, num_episodes: int = 100) -> Dict:
"""Run the complete few-shot experiment."""
results = {
'episodes': [],
'class_metrics': {cls: [] for cls in self.classes},
'overall_metrics': []
}
print(f"Running {num_episodes} few-shot episodes...")
for episode in tqdm(range(num_episodes)):
# Sample random class and query image
class_name = np.random.choice(self.classes)
query_image, query_mask = self.data_loader.get_random_query(class_name)
# Run episode
episode_result = self.run_episode(query_image, query_mask, class_name)
# Store results
results['episodes'].append({
'episode': episode,
'class': class_name,
'metrics': episode_result['metrics']
})
results['class_metrics'][class_name].append(episode_result['metrics'])
# Compute overall metrics
overall_metrics = {
'mean_iou': np.mean([ep['metrics']['iou'] for ep in results['episodes']]),
'mean_dice': np.mean([ep['metrics']['dice'] for ep in results['episodes']]),
'mean_precision': np.mean([ep['metrics']['precision'] for ep in results['episodes']]),
'mean_recall': np.mean([ep['metrics']['recall'] for ep in results['episodes']])
}
results['overall_metrics'].append(overall_metrics)
# Visualize every 20 episodes
if episode % 20 == 0:
self.visualize_episode(
episode,
query_image,
query_mask,
episode_result['predictions'],
episode_result['support_images'],
episode_result['support_masks'],
class_name
)
return results
def visualize_episode(
self,
episode: int,
query_image: torch.Tensor,
query_mask: torch.Tensor,
predictions: Dict[str, torch.Tensor],
support_images: List[torch.Tensor],
support_masks: List[torch.Tensor],
class_name: str
):
"""Visualize a few-shot episode."""
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
# Query image
axes[0, 0].imshow(query_image.permute(1, 2, 0).cpu().numpy())
axes[0, 0].set_title(f"Query Image - {class_name}")
axes[0, 0].axis('off')
# Ground truth
axes[0, 1].imshow(query_mask.cpu().numpy(), cmap='gray')
axes[0, 1].set_title("Ground Truth")
axes[0, 1].axis('off')
# Prediction
if class_name in predictions:
pred_mask = predictions[class_name]
axes[0, 2].imshow(pred_mask.cpu().numpy(), cmap='gray')
axes[0, 2].set_title("Prediction")
else:
axes[0, 2].text(0.5, 0.5, "No Prediction", ha='center', va='center')
axes[0, 2].axis('off')
# Support examples
for i in range(min(3, len(support_images))):
axes[1, i].imshow(support_images[i].permute(1, 2, 0).cpu().numpy())
axes[1, i].set_title(f"Support {i+1}")
axes[1, i].axis('off')
plt.tight_layout()
plt.savefig(os.path.join(self.output_dir, f"episode_{episode}.png"))
plt.close()
def save_results(self, results: Dict):
"""Save experiment results."""
# Save metrics
with open(os.path.join(self.output_dir, 'results.json'), 'w') as f:
json.dump(results, f, indent=2)
# Save summary
summary = {
'num_episodes': len(results['episodes']),
'num_shots': self.num_shots,
'classes': self.classes,
'final_metrics': results['overall_metrics'][-1] if results['overall_metrics'] else {},
'class_averages': {}
}
for class_name in self.classes:
if results['class_metrics'][class_name]:
class_metrics = results['class_metrics'][class_name]
summary['class_averages'][class_name] = {
'mean_iou': np.mean([m['iou'] for m in class_metrics]),
'mean_dice': np.mean([m['dice'] for m in class_metrics]),
'std_iou': np.std([m['iou'] for m in class_metrics]),
'std_dice': np.std([m['dice'] for m in class_metrics])
}
with open(os.path.join(self.output_dir, 'summary.json'), 'w') as f:
json.dump(summary, f, indent=2)
print(f"Results saved to {self.output_dir}")
print(f"Final mean IoU: {summary['final_metrics'].get('mean_iou', 0):.3f}")
print(f"Final mean Dice: {summary['final_metrics'].get('mean_dice', 0):.3f}")
def main():
parser = argparse.ArgumentParser(description="Few-shot satellite segmentation experiment")
parser.add_argument("--sam2_checkpoint", type=str, required=True, help="Path to SAM 2 checkpoint")
parser.add_argument("--data_dir", type=str, required=True, help="Path to satellite dataset")
parser.add_argument("--output_dir", type=str, default="results/few_shot_satellite", help="Output directory")
parser.add_argument("--num_shots", type=int, default=5, help="Number of support examples")
parser.add_argument("--num_episodes", type=int, default=100, help="Number of episodes")
parser.add_argument("--device", type=str, default="cuda", help="Device to use")
args = parser.parse_args()
# Run experiment
experiment = SatelliteFewShotExperiment(
sam2_checkpoint=args.sam2_checkpoint,
data_dir=args.data_dir,
output_dir=args.output_dir,
device=args.device,
num_shots=args.num_shots
)
results = experiment.run_experiment(num_episodes=args.num_episodes)
experiment.save_results(results)
if __name__ == "__main__":
main()