|
""" |
|
Few-Shot Satellite Imagery Segmentation Experiment |
|
|
|
This experiment demonstrates few-shot learning for satellite imagery segmentation |
|
using SAM 2 with minimal labeled examples. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import os |
|
import json |
|
from typing import List, Dict, Tuple |
|
import argparse |
|
from tqdm import tqdm |
|
|
|
|
|
import sys |
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
from models.sam2_fewshot import SAM2FewShot, FewShotTrainer |
|
from utils.data_loader import SatelliteDataLoader |
|
from utils.metrics import SegmentationMetrics |
|
from utils.visualization import visualize_segmentation |
|
|
|
|
|
class SatelliteFewShotExperiment: |
|
"""Few-shot learning experiment for satellite imagery.""" |
|
|
|
def __init__( |
|
self, |
|
sam2_checkpoint: str, |
|
data_dir: str, |
|
output_dir: str, |
|
device: str = "cuda", |
|
num_shots: int = 5, |
|
num_classes: int = 4 |
|
): |
|
self.device = device |
|
self.num_shots = num_shots |
|
self.num_classes = num_classes |
|
self.output_dir = output_dir |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
self.model = SAM2FewShot( |
|
sam2_checkpoint=sam2_checkpoint, |
|
device=device, |
|
prompt_engineering=True, |
|
visual_similarity=True |
|
) |
|
|
|
|
|
self.trainer = FewShotTrainer(self.model, learning_rate=1e-4) |
|
|
|
|
|
self.data_loader = SatelliteDataLoader(data_dir) |
|
|
|
|
|
self.metrics = SegmentationMetrics() |
|
|
|
|
|
self.classes = ["building", "road", "vegetation", "water"] |
|
|
|
def load_support_examples(self, class_name: str) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: |
|
"""Load support examples for a specific class.""" |
|
support_images, support_masks = [], [] |
|
|
|
|
|
examples = self.data_loader.get_class_examples(class_name, self.num_shots) |
|
|
|
for example in examples: |
|
image, mask = example |
|
support_images.append(image) |
|
support_masks.append(mask) |
|
|
|
return support_images, support_masks |
|
|
|
def run_episode( |
|
self, |
|
query_image: torch.Tensor, |
|
query_mask: torch.Tensor, |
|
class_name: str |
|
) -> Dict: |
|
"""Run a single few-shot episode.""" |
|
|
|
support_images, support_masks = self.load_support_examples(class_name) |
|
|
|
|
|
for img, mask in zip(support_images, support_masks): |
|
self.model.add_few_shot_example("satellite", class_name, img, mask) |
|
|
|
|
|
predictions = self.model.segment( |
|
query_image, |
|
"satellite", |
|
[class_name], |
|
use_few_shot=True |
|
) |
|
|
|
|
|
if class_name in predictions: |
|
pred_mask = predictions[class_name] |
|
metrics = self.metrics.compute_metrics(pred_mask, query_mask) |
|
else: |
|
metrics = { |
|
'iou': 0.0, |
|
'dice': 0.0, |
|
'precision': 0.0, |
|
'recall': 0.0 |
|
} |
|
|
|
return { |
|
'predictions': predictions, |
|
'metrics': metrics, |
|
'support_images': support_images, |
|
'support_masks': support_masks |
|
} |
|
|
|
def run_experiment(self, num_episodes: int = 100) -> Dict: |
|
"""Run the complete few-shot experiment.""" |
|
results = { |
|
'episodes': [], |
|
'class_metrics': {cls: [] for cls in self.classes}, |
|
'overall_metrics': [] |
|
} |
|
|
|
print(f"Running {num_episodes} few-shot episodes...") |
|
|
|
for episode in tqdm(range(num_episodes)): |
|
|
|
class_name = np.random.choice(self.classes) |
|
query_image, query_mask = self.data_loader.get_random_query(class_name) |
|
|
|
|
|
episode_result = self.run_episode(query_image, query_mask, class_name) |
|
|
|
|
|
results['episodes'].append({ |
|
'episode': episode, |
|
'class': class_name, |
|
'metrics': episode_result['metrics'] |
|
}) |
|
|
|
results['class_metrics'][class_name].append(episode_result['metrics']) |
|
|
|
|
|
overall_metrics = { |
|
'mean_iou': np.mean([ep['metrics']['iou'] for ep in results['episodes']]), |
|
'mean_dice': np.mean([ep['metrics']['dice'] for ep in results['episodes']]), |
|
'mean_precision': np.mean([ep['metrics']['precision'] for ep in results['episodes']]), |
|
'mean_recall': np.mean([ep['metrics']['recall'] for ep in results['episodes']]) |
|
} |
|
results['overall_metrics'].append(overall_metrics) |
|
|
|
|
|
if episode % 20 == 0: |
|
self.visualize_episode( |
|
episode, |
|
query_image, |
|
query_mask, |
|
episode_result['predictions'], |
|
episode_result['support_images'], |
|
episode_result['support_masks'], |
|
class_name |
|
) |
|
|
|
return results |
|
|
|
def visualize_episode( |
|
self, |
|
episode: int, |
|
query_image: torch.Tensor, |
|
query_mask: torch.Tensor, |
|
predictions: Dict[str, torch.Tensor], |
|
support_images: List[torch.Tensor], |
|
support_masks: List[torch.Tensor], |
|
class_name: str |
|
): |
|
"""Visualize a few-shot episode.""" |
|
fig, axes = plt.subplots(2, 3, figsize=(15, 10)) |
|
|
|
|
|
axes[0, 0].imshow(query_image.permute(1, 2, 0).cpu().numpy()) |
|
axes[0, 0].set_title(f"Query Image - {class_name}") |
|
axes[0, 0].axis('off') |
|
|
|
|
|
axes[0, 1].imshow(query_mask.cpu().numpy(), cmap='gray') |
|
axes[0, 1].set_title("Ground Truth") |
|
axes[0, 1].axis('off') |
|
|
|
|
|
if class_name in predictions: |
|
pred_mask = predictions[class_name] |
|
axes[0, 2].imshow(pred_mask.cpu().numpy(), cmap='gray') |
|
axes[0, 2].set_title("Prediction") |
|
else: |
|
axes[0, 2].text(0.5, 0.5, "No Prediction", ha='center', va='center') |
|
axes[0, 2].axis('off') |
|
|
|
|
|
for i in range(min(3, len(support_images))): |
|
axes[1, i].imshow(support_images[i].permute(1, 2, 0).cpu().numpy()) |
|
axes[1, i].set_title(f"Support {i+1}") |
|
axes[1, i].axis('off') |
|
|
|
plt.tight_layout() |
|
plt.savefig(os.path.join(self.output_dir, f"episode_{episode}.png")) |
|
plt.close() |
|
|
|
def save_results(self, results: Dict): |
|
"""Save experiment results.""" |
|
|
|
with open(os.path.join(self.output_dir, 'results.json'), 'w') as f: |
|
json.dump(results, f, indent=2) |
|
|
|
|
|
summary = { |
|
'num_episodes': len(results['episodes']), |
|
'num_shots': self.num_shots, |
|
'classes': self.classes, |
|
'final_metrics': results['overall_metrics'][-1] if results['overall_metrics'] else {}, |
|
'class_averages': {} |
|
} |
|
|
|
for class_name in self.classes: |
|
if results['class_metrics'][class_name]: |
|
class_metrics = results['class_metrics'][class_name] |
|
summary['class_averages'][class_name] = { |
|
'mean_iou': np.mean([m['iou'] for m in class_metrics]), |
|
'mean_dice': np.mean([m['dice'] for m in class_metrics]), |
|
'std_iou': np.std([m['iou'] for m in class_metrics]), |
|
'std_dice': np.std([m['dice'] for m in class_metrics]) |
|
} |
|
|
|
with open(os.path.join(self.output_dir, 'summary.json'), 'w') as f: |
|
json.dump(summary, f, indent=2) |
|
|
|
print(f"Results saved to {self.output_dir}") |
|
print(f"Final mean IoU: {summary['final_metrics'].get('mean_iou', 0):.3f}") |
|
print(f"Final mean Dice: {summary['final_metrics'].get('mean_dice', 0):.3f}") |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Few-shot satellite segmentation experiment") |
|
parser.add_argument("--sam2_checkpoint", type=str, required=True, help="Path to SAM 2 checkpoint") |
|
parser.add_argument("--data_dir", type=str, required=True, help="Path to satellite dataset") |
|
parser.add_argument("--output_dir", type=str, default="results/few_shot_satellite", help="Output directory") |
|
parser.add_argument("--num_shots", type=int, default=5, help="Number of support examples") |
|
parser.add_argument("--num_episodes", type=int, default=100, help="Number of episodes") |
|
parser.add_argument("--device", type=str, default="cuda", help="Device to use") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
experiment = SatelliteFewShotExperiment( |
|
sam2_checkpoint=args.sam2_checkpoint, |
|
data_dir=args.data_dir, |
|
output_dir=args.output_dir, |
|
device=args.device, |
|
num_shots=args.num_shots |
|
) |
|
|
|
results = experiment.run_experiment(num_episodes=args.num_episodes) |
|
experiment.save_results(results) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |