File size: 9,878 Bytes
12fa055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Few-Shot Satellite Imagery Segmentation Experiment

This experiment demonstrates few-shot learning for satellite imagery segmentation
using SAM 2 with minimal labeled examples.
"""

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os
import json
from typing import List, Dict, Tuple
import argparse
from tqdm import tqdm

# Add parent directory to path
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from models.sam2_fewshot import SAM2FewShot, FewShotTrainer
from utils.data_loader import SatelliteDataLoader
from utils.metrics import SegmentationMetrics
from utils.visualization import visualize_segmentation


class SatelliteFewShotExperiment:
    """Few-shot learning experiment for satellite imagery."""
    
    def __init__(
        self,
        sam2_checkpoint: str,
        data_dir: str,
        output_dir: str,
        device: str = "cuda",
        num_shots: int = 5,
        num_classes: int = 4
    ):
        self.device = device
        self.num_shots = num_shots
        self.num_classes = num_classes
        self.output_dir = output_dir
        
        # Create output directory
        os.makedirs(output_dir, exist_ok=True)
        
        # Initialize model
        self.model = SAM2FewShot(
            sam2_checkpoint=sam2_checkpoint,
            device=device,
            prompt_engineering=True,
            visual_similarity=True
        )
        
        # Initialize trainer
        self.trainer = FewShotTrainer(self.model, learning_rate=1e-4)
        
        # Initialize data loader
        self.data_loader = SatelliteDataLoader(data_dir)
        
        # Initialize metrics
        self.metrics = SegmentationMetrics()
        
        # Satellite-specific classes
        self.classes = ["building", "road", "vegetation", "water"]
        
    def load_support_examples(self, class_name: str) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        """Load support examples for a specific class."""
        support_images, support_masks = [], []
        
        # Load few examples for this class
        examples = self.data_loader.get_class_examples(class_name, self.num_shots)
        
        for example in examples:
            image, mask = example
            support_images.append(image)
            support_masks.append(mask)
        
        return support_images, support_masks
    
    def run_episode(
        self, 
        query_image: torch.Tensor, 
        query_mask: torch.Tensor, 
        class_name: str
    ) -> Dict:
        """Run a single few-shot episode."""
        # Load support examples
        support_images, support_masks = self.load_support_examples(class_name)
        
        # Add support examples to model memory
        for img, mask in zip(support_images, support_masks):
            self.model.add_few_shot_example("satellite", class_name, img, mask)
        
        # Perform segmentation
        predictions = self.model.segment(
            query_image, 
            "satellite", 
            [class_name], 
            use_few_shot=True
        )
        
        # Compute metrics
        if class_name in predictions:
            pred_mask = predictions[class_name]
            metrics = self.metrics.compute_metrics(pred_mask, query_mask)
        else:
            metrics = {
                'iou': 0.0,
                'dice': 0.0,
                'precision': 0.0,
                'recall': 0.0
            }
        
        return {
            'predictions': predictions,
            'metrics': metrics,
            'support_images': support_images,
            'support_masks': support_masks
        }
    
    def run_experiment(self, num_episodes: int = 100) -> Dict:
        """Run the complete few-shot experiment."""
        results = {
            'episodes': [],
            'class_metrics': {cls: [] for cls in self.classes},
            'overall_metrics': []
        }
        
        print(f"Running {num_episodes} few-shot episodes...")
        
        for episode in tqdm(range(num_episodes)):
            # Sample random class and query image
            class_name = np.random.choice(self.classes)
            query_image, query_mask = self.data_loader.get_random_query(class_name)
            
            # Run episode
            episode_result = self.run_episode(query_image, query_mask, class_name)
            
            # Store results
            results['episodes'].append({
                'episode': episode,
                'class': class_name,
                'metrics': episode_result['metrics']
            })
            
            results['class_metrics'][class_name].append(episode_result['metrics'])
            
            # Compute overall metrics
            overall_metrics = {
                'mean_iou': np.mean([ep['metrics']['iou'] for ep in results['episodes']]),
                'mean_dice': np.mean([ep['metrics']['dice'] for ep in results['episodes']]),
                'mean_precision': np.mean([ep['metrics']['precision'] for ep in results['episodes']]),
                'mean_recall': np.mean([ep['metrics']['recall'] for ep in results['episodes']])
            }
            results['overall_metrics'].append(overall_metrics)
            
            # Visualize every 20 episodes
            if episode % 20 == 0:
                self.visualize_episode(
                    episode, 
                    query_image, 
                    query_mask, 
                    episode_result['predictions'],
                    episode_result['support_images'],
                    episode_result['support_masks'],
                    class_name
                )
        
        return results
    
    def visualize_episode(
        self,
        episode: int,
        query_image: torch.Tensor,
        query_mask: torch.Tensor,
        predictions: Dict[str, torch.Tensor],
        support_images: List[torch.Tensor],
        support_masks: List[torch.Tensor],
        class_name: str
    ):
        """Visualize a few-shot episode."""
        fig, axes = plt.subplots(2, 3, figsize=(15, 10))
        
        # Query image
        axes[0, 0].imshow(query_image.permute(1, 2, 0).cpu().numpy())
        axes[0, 0].set_title(f"Query Image - {class_name}")
        axes[0, 0].axis('off')
        
        # Ground truth
        axes[0, 1].imshow(query_mask.cpu().numpy(), cmap='gray')
        axes[0, 1].set_title("Ground Truth")
        axes[0, 1].axis('off')
        
        # Prediction
        if class_name in predictions:
            pred_mask = predictions[class_name]
            axes[0, 2].imshow(pred_mask.cpu().numpy(), cmap='gray')
            axes[0, 2].set_title("Prediction")
        else:
            axes[0, 2].text(0.5, 0.5, "No Prediction", ha='center', va='center')
        axes[0, 2].axis('off')
        
        # Support examples
        for i in range(min(3, len(support_images))):
            axes[1, i].imshow(support_images[i].permute(1, 2, 0).cpu().numpy())
            axes[1, i].set_title(f"Support {i+1}")
            axes[1, i].axis('off')
        
        plt.tight_layout()
        plt.savefig(os.path.join(self.output_dir, f"episode_{episode}.png"))
        plt.close()
    
    def save_results(self, results: Dict):
        """Save experiment results."""
        # Save metrics
        with open(os.path.join(self.output_dir, 'results.json'), 'w') as f:
            json.dump(results, f, indent=2)
        
        # Save summary
        summary = {
            'num_episodes': len(results['episodes']),
            'num_shots': self.num_shots,
            'classes': self.classes,
            'final_metrics': results['overall_metrics'][-1] if results['overall_metrics'] else {},
            'class_averages': {}
        }
        
        for class_name in self.classes:
            if results['class_metrics'][class_name]:
                class_metrics = results['class_metrics'][class_name]
                summary['class_averages'][class_name] = {
                    'mean_iou': np.mean([m['iou'] for m in class_metrics]),
                    'mean_dice': np.mean([m['dice'] for m in class_metrics]),
                    'std_iou': np.std([m['iou'] for m in class_metrics]),
                    'std_dice': np.std([m['dice'] for m in class_metrics])
                }
        
        with open(os.path.join(self.output_dir, 'summary.json'), 'w') as f:
            json.dump(summary, f, indent=2)
        
        print(f"Results saved to {self.output_dir}")
        print(f"Final mean IoU: {summary['final_metrics'].get('mean_iou', 0):.3f}")
        print(f"Final mean Dice: {summary['final_metrics'].get('mean_dice', 0):.3f}")


def main():
    parser = argparse.ArgumentParser(description="Few-shot satellite segmentation experiment")
    parser.add_argument("--sam2_checkpoint", type=str, required=True, help="Path to SAM 2 checkpoint")
    parser.add_argument("--data_dir", type=str, required=True, help="Path to satellite dataset")
    parser.add_argument("--output_dir", type=str, default="results/few_shot_satellite", help="Output directory")
    parser.add_argument("--num_shots", type=int, default=5, help="Number of support examples")
    parser.add_argument("--num_episodes", type=int, default=100, help="Number of episodes")
    parser.add_argument("--device", type=str, default="cuda", help="Device to use")
    
    args = parser.parse_args()
    
    # Run experiment
    experiment = SatelliteFewShotExperiment(
        sam2_checkpoint=args.sam2_checkpoint,
        data_dir=args.data_dir,
        output_dir=args.output_dir,
        device=args.device,
        num_shots=args.num_shots
    )
    
    results = experiment.run_experiment(num_episodes=args.num_episodes)
    experiment.save_results(results)


if __name__ == "__main__":
    main()