metadata
tags:
- mteb
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2560000
- loss:MultipleNegativesRankingLoss
model-index:
- name: XLM-RoBERTa-base-MSMARCO-WebFAQ
results:
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (ar)
config: ar
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 25.374000000000002
- type: map_at_10
value: 40.863
- type: map_at_100
value: 42.667
- type: map_at_1000
value: 42.754999999999995
- type: map_at_20
value: 41.948
- type: map_at_3
value: 35.512
- type: map_at_5
value: 38.385999999999996
- type: mrr_at_1
value: 38.6
- type: mrr_at_10
value: 50.489
- type: mrr_at_100
value: 51.229
- type: mrr_at_1000
value: 51.248000000000005
- type: mrr_at_20
value: 50.980000000000004
- type: mrr_at_3
value: 46.933
- type: mrr_at_5
value: 48.983
- type: ndcg_at_1
value: 38.6
- type: ndcg_at_10
value: 49.257
- type: ndcg_at_100
value: 55.611999999999995
- type: ndcg_at_1000
value: 56.946
- type: ndcg_at_20
value: 52.10399999999999
- type: ndcg_at_3
value: 41.501
- type: ndcg_at_5
value: 44.729
- type: precision_at_1
value: 38.6
- type: precision_at_10
value: 11.540000000000001
- type: precision_at_100
value: 1.702
- type: precision_at_1000
value: 0.189
- type: precision_at_20
value: 6.795
- type: precision_at_3
value: 24.3
- type: precision_at_5
value: 18.16
- type: recall_at_1
value: 25.374000000000002
- type: recall_at_10
value: 63.474
- type: recall_at_100
value: 87.902
- type: recall_at_1000
value: 96.301
- type: recall_at_20
value: 72.538
- type: recall_at_3
value: 43.144
- type: recall_at_5
value: 51.548
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (arabic)
config: arabic
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 26.056
- type: map_at_10
value: 37.684
- type: map_at_100
value: 38.616
- type: map_at_1000
value: 38.66
- type: map_at_20
value: 38.281
- type: map_at_3
value: 34.348
- type: map_at_5
value: 36.181999999999995
- type: mrr_at_1
value: 27.845
- type: mrr_at_10
value: 39.275
- type: mrr_at_100
value: 40.083
- type: mrr_at_1000
value: 40.115
- type: mrr_at_20
value: 39.822
- type: mrr_at_3
value: 36.124
- type: mrr_at_5
value: 37.885999999999996
- type: ndcg_at_1
value: 27.845
- type: ndcg_at_10
value: 44.153
- type: ndcg_at_100
value: 48.291000000000004
- type: ndcg_at_1000
value: 49.443
- type: ndcg_at_20
value: 46.188
- type: ndcg_at_3
value: 37.448
- type: ndcg_at_5
value: 40.685
- type: precision_at_1
value: 27.845
- type: precision_at_10
value: 6.938
- type: precision_at_100
value: 0.9209999999999999
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_20
value: 3.936
- type: precision_at_3
value: 16.158
- type: precision_at_5
value: 11.452
- type: recall_at_1
value: 26.056
- type: recall_at_10
value: 62.627
- type: recall_at_100
value: 80.759
- type: recall_at_1000
value: 89.547
- type: recall_at_20
value: 70.21300000000001
- type: recall_at_3
value: 44.681
- type: recall_at_5
value: 52.344
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (bn)
config: bn
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 23.083000000000002
- type: map_at_10
value: 37.285000000000004
- type: map_at_100
value: 38.834
- type: map_at_1000
value: 38.948
- type: map_at_20
value: 38.195
- type: map_at_3
value: 31.893
- type: map_at_5
value: 34.755
- type: mrr_at_1
value: 36.496
- type: mrr_at_10
value: 48.486000000000004
- type: mrr_at_100
value: 49.248
- type: mrr_at_1000
value: 49.28
- type: mrr_at_20
value: 48.998000000000005
- type: mrr_at_3
value: 44.85
- type: mrr_at_5
value: 47.028
- type: ndcg_at_1
value: 36.496
- type: ndcg_at_10
value: 45.96
- type: ndcg_at_100
value: 51.64
- type: ndcg_at_1000
value: 53.542
- type: ndcg_at_20
value: 48.543
- type: ndcg_at_3
value: 37.964999999999996
- type: ndcg_at_5
value: 41.44
- type: precision_at_1
value: 36.496
- type: precision_at_10
value: 11.29
- type: precision_at_100
value: 1.6199999999999999
- type: precision_at_1000
value: 0.191
- type: precision_at_20
value: 6.582000000000001
- type: precision_at_3
value: 22.871
- type: precision_at_5
value: 17.324
- type: recall_at_1
value: 23.083000000000002
- type: recall_at_10
value: 59.414
- type: recall_at_100
value: 81.08
- type: recall_at_1000
value: 92.793
- type: recall_at_20
value: 67.634
- type: recall_at_3
value: 39.001000000000005
- type: recall_at_5
value: 47.612
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (bengali)
config: bengali
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 23.874000000000002
- type: map_at_10
value: 38.235
- type: map_at_100
value: 39.428000000000004
- type: map_at_1000
value: 39.458
- type: map_at_20
value: 39.119
- type: map_at_3
value: 34.233999999999995
- type: map_at_5
value: 36.577
- type: mrr_at_1
value: 28.829
- type: mrr_at_10
value: 41.032999999999994
- type: mrr_at_100
value: 42.077999999999996
- type: mrr_at_1000
value: 42.104
- type: mrr_at_20
value: 41.855
- type: mrr_at_3
value: 37.688
- type: mrr_at_5
value: 39.985
- type: ndcg_at_1
value: 28.829
- type: ndcg_at_10
value: 45.214999999999996
- type: ndcg_at_100
value: 49.986999999999995
- type: ndcg_at_1000
value: 50.67700000000001
- type: ndcg_at_20
value: 48.291000000000004
- type: ndcg_at_3
value: 37.822
- type: ndcg_at_5
value: 41.9
- type: precision_at_1
value: 28.829
- type: precision_at_10
value: 7.477
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.105
- type: precision_at_20
value: 4.414
- type: precision_at_3
value: 17.416999999999998
- type: precision_at_5
value: 12.613
- type: recall_at_1
value: 23.874000000000002
- type: recall_at_10
value: 63.964
- type: recall_at_100
value: 83.784
- type: recall_at_1000
value: 88.739
- type: recall_at_20
value: 75.676
- type: recall_at_3
value: 45.045
- type: recall_at_5
value: 54.505
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (de)
config: de
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 12.524
- type: map_at_10
value: 25.932
- type: map_at_100
value: 29.215999999999998
- type: map_at_1000
value: 29.342000000000002
- type: map_at_20
value: 27.515
- type: map_at_3
value: 20.196
- type: map_at_5
value: 23.311999999999998
- type: mrr_at_1
value: 28.525
- type: mrr_at_10
value: 41.854
- type: mrr_at_100
value: 42.977
- type: mrr_at_1000
value: 42.998
- type: mrr_at_20
value: 42.628
- type: mrr_at_3
value: 38.251000000000005
- type: mrr_at_5
value: 40.514
- type: ndcg_at_1
value: 28.525
- type: ndcg_at_10
value: 35.831
- type: ndcg_at_100
value: 47.410000000000004
- type: ndcg_at_1000
value: 48.931000000000004
- type: ndcg_at_20
value: 40.021
- type: ndcg_at_3
value: 28.614
- type: ndcg_at_5
value: 31.427
- type: precision_at_1
value: 28.525
- type: precision_at_10
value: 11.934000000000001
- type: precision_at_100
value: 2.37
- type: precision_at_1000
value: 0.261
- type: precision_at_20
value: 7.704999999999999
- type: precision_at_3
value: 21.421
- type: precision_at_5
value: 17.574
- type: recall_at_1
value: 12.524
- type: recall_at_10
value: 47.558
- type: recall_at_100
value: 90.068
- type: recall_at_1000
value: 98.68900000000001
- type: recall_at_20
value: 59.943999999999996
- type: recall_at_3
value: 26.889999999999997
- type: recall_at_5
value: 36.152
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (en)
config: en
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 14.431
- type: map_at_10
value: 27.194000000000003
- type: map_at_100
value: 30.575000000000003
- type: map_at_1000
value: 30.75
- type: map_at_20
value: 28.938999999999997
- type: map_at_3
value: 21.69
- type: map_at_5
value: 24.657999999999998
- type: mrr_at_1
value: 31.163999999999998
- type: mrr_at_10
value: 43.417
- type: mrr_at_100
value: 44.48
- type: mrr_at_1000
value: 44.499
- type: mrr_at_20
value: 44.112
- type: mrr_at_3
value: 39.57
- type: mrr_at_5
value: 41.692
- type: ndcg_at_1
value: 31.163999999999998
- type: ndcg_at_10
value: 36.925000000000004
- type: ndcg_at_100
value: 48.15
- type: ndcg_at_1000
value: 50.131
- type: ndcg_at_20
value: 41.308
- type: ndcg_at_3
value: 30.291
- type: ndcg_at_5
value: 32.731
- type: precision_at_1
value: 31.163999999999998
- type: precision_at_10
value: 12.065
- type: precision_at_100
value: 2.469
- type: precision_at_1000
value: 0.28500000000000003
- type: precision_at_20
value: 7.997
- type: precision_at_3
value: 21.443
- type: precision_at_5
value: 17.447
- type: recall_at_1
value: 14.431
- type: recall_at_10
value: 48.275
- type: recall_at_100
value: 87.19200000000001
- type: recall_at_1000
value: 97.79299999999999
- type: recall_at_20
value: 60.870000000000005
- type: recall_at_3
value: 27.679
- type: recall_at_5
value: 36.479
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (english)
config: english
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 13.642000000000001
- type: map_at_10
value: 22.744
- type: map_at_100
value: 24.083
- type: map_at_1000
value: 24.157
- type: map_at_20
value: 23.592
- type: map_at_3
value: 19.134999999999998
- type: map_at_5
value: 21.448999999999998
- type: mrr_at_1
value: 16.667
- type: mrr_at_10
value: 25.77
- type: mrr_at_100
value: 26.878
- type: mrr_at_1000
value: 26.938000000000002
- type: mrr_at_20
value: 26.503
- type: mrr_at_3
value: 22.512999999999998
- type: mrr_at_5
value: 24.516
- type: ndcg_at_1
value: 16.667
- type: ndcg_at_10
value: 28.652
- type: ndcg_at_100
value: 34.716
- type: ndcg_at_1000
value: 36.649
- type: ndcg_at_20
value: 31.508000000000003
- type: ndcg_at_3
value: 21.748
- type: ndcg_at_5
value: 25.647
- type: precision_at_1
value: 16.667
- type: precision_at_10
value: 5.3629999999999995
- type: precision_at_100
value: 0.886
- type: precision_at_1000
value: 0.107
- type: precision_at_20
value: 3.36
- type: precision_at_3
value: 10.529
- type: precision_at_5
value: 8.522
- type: recall_at_1
value: 13.642000000000001
- type: recall_at_10
value: 43.884
- type: recall_at_100
value: 70.744
- type: recall_at_1000
value: 85.372
- type: recall_at_20
value: 54.48
- type: recall_at_3
value: 26.142
- type: recall_at_5
value: 35.17
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (fa)
config: fa
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 20.752000000000002
- type: map_at_10
value: 34.931
- type: map_at_100
value: 37.132
- type: map_at_1000
value: 37.230999999999995
- type: map_at_20
value: 36.144
- type: map_at_3
value: 29.692
- type: map_at_5
value: 32.536
- type: mrr_at_1
value: 32.437
- type: mrr_at_10
value: 44.41
- type: mrr_at_100
value: 45.324
- type: mrr_at_1000
value: 45.348
- type: mrr_at_20
value: 44.945
- type: mrr_at_3
value: 41.482
- type: mrr_at_5
value: 43.183
- type: ndcg_at_1
value: 32.437
- type: ndcg_at_10
value: 43.018
- type: ndcg_at_100
value: 50.805
- type: ndcg_at_1000
value: 52.245
- type: ndcg_at_20
value: 46.215
- type: ndcg_at_3
value: 36.269
- type: ndcg_at_5
value: 39.101
- type: precision_at_1
value: 32.437
- type: precision_at_10
value: 11.013
- type: precision_at_100
value: 1.799
- type: precision_at_1000
value: 0.201
- type: precision_at_20
value: 6.7250000000000005
- type: precision_at_3
value: 22.416
- type: precision_at_5
value: 17.152
- type: recall_at_1
value: 20.752000000000002
- type: recall_at_10
value: 56.150999999999996
- type: recall_at_100
value: 85.735
- type: recall_at_1000
value: 94.599
- type: recall_at_20
value: 66.237
- type: recall_at_3
value: 37.551
- type: recall_at_5
value: 45.629
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (fi)
config: fi
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 28.829
- type: map_at_10
value: 46.749
- type: map_at_100
value: 48.457
- type: map_at_1000
value: 48.516
- type: map_at_20
value: 47.798
- type: map_at_3
value: 40.449
- type: map_at_5
value: 44.3
- type: mrr_at_1
value: 46.5
- type: mrr_at_10
value: 58.619
- type: mrr_at_100
value: 59.294999999999995
- type: mrr_at_1000
value: 59.307
- type: mrr_at_20
value: 59.071
- type: mrr_at_3
value: 55.75
- type: mrr_at_5
value: 57.605
- type: ndcg_at_1
value: 46.5
- type: ndcg_at_10
value: 55.933
- type: ndcg_at_100
value: 61.732
- type: ndcg_at_1000
value: 62.651
- type: ndcg_at_20
value: 58.679
- type: ndcg_at_3
value: 46.866
- type: ndcg_at_5
value: 51.625
- type: precision_at_1
value: 46.5
- type: precision_at_10
value: 12.920000000000002
- type: precision_at_100
value: 1.745
- type: precision_at_1000
value: 0.187
- type: precision_at_20
value: 7.37
- type: precision_at_3
value: 28.166999999999998
- type: precision_at_5
value: 21.2
- type: recall_at_1
value: 28.829
- type: recall_at_10
value: 70.075
- type: recall_at_100
value: 92.098
- type: recall_at_1000
value: 97.813
- type: recall_at_20
value: 78.975
- type: recall_at_3
value: 48.635
- type: recall_at_5
value: 59.202999999999996
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (finnish)
config: finnish
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 20.654
- type: map_at_10
value: 32.103
- type: map_at_100
value: 33.129
- type: map_at_1000
value: 33.184999999999995
- type: map_at_20
value: 32.739000000000004
- type: map_at_3
value: 28.338
- type: map_at_5
value: 30.564000000000004
- type: mrr_at_1
value: 22.567999999999998
- type: mrr_at_10
value: 33.949
- type: mrr_at_100
value: 34.804
- type: mrr_at_1000
value: 34.849999999999994
- type: mrr_at_20
value: 34.496
- type: mrr_at_3
value: 30.581999999999997
- type: mrr_at_5
value: 32.5
- type: ndcg_at_1
value: 22.567999999999998
- type: ndcg_at_10
value: 38.681
- type: ndcg_at_100
value: 43.367
- type: ndcg_at_1000
value: 44.836999999999996
- type: ndcg_at_20
value: 40.815
- type: ndcg_at_3
value: 31.328
- type: ndcg_at_5
value: 35.083
- type: precision_at_1
value: 22.567999999999998
- type: precision_at_10
value: 6.483
- type: precision_at_100
value: 0.906
- type: precision_at_1000
value: 0.104
- type: precision_at_20
value: 3.7319999999999998
- type: precision_at_3
value: 14.035
- type: precision_at_5
value: 10.51
- type: recall_at_1
value: 20.654
- type: recall_at_10
value: 57.297
- type: recall_at_100
value: 78.363
- type: recall_at_1000
value: 89.673
- type: recall_at_20
value: 65.28399999999999
- type: recall_at_3
value: 37.799
- type: recall_at_5
value: 46.518
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (fr)
config: fr
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 15.484
- type: map_at_10
value: 29.692
- type: map_at_100
value: 32.604
- type: map_at_1000
value: 32.668
- type: map_at_20
value: 31.397000000000002
- type: map_at_3
value: 23.469
- type: map_at_5
value: 26.454
- type: mrr_at_1
value: 28.863
- type: mrr_at_10
value: 41.03
- type: mrr_at_100
value: 42.134
- type: mrr_at_1000
value: 42.149
- type: mrr_at_20
value: 41.730000000000004
- type: mrr_at_3
value: 36.394999999999996
- type: mrr_at_5
value: 38.814
- type: ndcg_at_1
value: 28.863
- type: ndcg_at_10
value: 39.523
- type: ndcg_at_100
value: 49.496
- type: ndcg_at_1000
value: 50.375
- type: ndcg_at_20
value: 43.923
- type: ndcg_at_3
value: 29.309
- type: ndcg_at_5
value: 33.077
- type: precision_at_1
value: 28.863
- type: precision_at_10
value: 11.254
- type: precision_at_100
value: 1.997
- type: precision_at_1000
value: 0.212
- type: precision_at_20
value: 7.172000000000001
- type: precision_at_3
value: 19.631
- type: precision_at_5
value: 15.568999999999999
- type: recall_at_1
value: 15.484
- type: recall_at_10
value: 56.279999999999994
- type: recall_at_100
value: 93.714
- type: recall_at_1000
value: 99.125
- type: recall_at_20
value: 70.215
- type: recall_at_3
value: 29.688
- type: recall_at_5
value: 39.329
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (hi)
config: hi
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 16.442999999999998
- type: map_at_10
value: 29.224
- type: map_at_100
value: 31.386999999999997
- type: map_at_1000
value: 31.529
- type: map_at_20
value: 30.54
- type: map_at_3
value: 24.521
- type: map_at_5
value: 26.979
- type: mrr_at_1
value: 33.428999999999995
- type: mrr_at_10
value: 42.951
- type: mrr_at_100
value: 43.832
- type: mrr_at_1000
value: 43.891000000000005
- type: mrr_at_20
value: 43.494
- type: mrr_at_3
value: 40.048
- type: mrr_at_5
value: 41.819
- type: ndcg_at_1
value: 33.428999999999995
- type: ndcg_at_10
value: 37.462
- type: ndcg_at_100
value: 45.123000000000005
- type: ndcg_at_1000
value: 47.805
- type: ndcg_at_20
value: 40.739999999999995
- type: ndcg_at_3
value: 31.89
- type: ndcg_at_5
value: 33.934999999999995
- type: precision_at_1
value: 33.428999999999995
- type: precision_at_10
value: 10.343
- type: precision_at_100
value: 1.714
- type: precision_at_1000
value: 0.20500000000000002
- type: precision_at_20
value: 6.4
- type: precision_at_3
value: 20.952
- type: precision_at_5
value: 15.886
- type: recall_at_1
value: 16.442999999999998
- type: recall_at_10
value: 47.987
- type: recall_at_100
value: 77.628
- type: recall_at_1000
value: 95.673
- type: recall_at_20
value: 58.199999999999996
- type: recall_at_3
value: 30.904999999999998
- type: recall_at_5
value: 38.705
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (id)
config: id
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 14.551
- type: map_at_10
value: 27.144000000000002
- type: map_at_100
value: 29.918
- type: map_at_1000
value: 30.14
- type: map_at_20
value: 28.665000000000003
- type: map_at_3
value: 22.004
- type: map_at_5
value: 24.851
- type: mrr_at_1
value: 33.542
- type: mrr_at_10
value: 45.576
- type: mrr_at_100
value: 46.402
- type: mrr_at_1000
value: 46.432
- type: mrr_at_20
value: 46.082
- type: mrr_at_3
value: 42.483
- type: mrr_at_5
value: 44.399
- type: ndcg_at_1
value: 33.542
- type: ndcg_at_10
value: 36.287000000000006
- type: ndcg_at_100
value: 45.253
- type: ndcg_at_1000
value: 48.33
- type: ndcg_at_20
value: 39.855000000000004
- type: ndcg_at_3
value: 31.69
- type: ndcg_at_5
value: 33.332
- type: precision_at_1
value: 33.542
- type: precision_at_10
value: 12.333
- type: precision_at_100
value: 2.322
- type: precision_at_1000
value: 0.292
- type: precision_at_20
value: 7.875
- type: precision_at_3
value: 23.125
- type: precision_at_5
value: 18.583
- type: recall_at_1
value: 14.551
- type: recall_at_10
value: 43.636
- type: recall_at_100
value: 73.603
- type: recall_at_1000
value: 90.596
- type: recall_at_20
value: 53.559
- type: recall_at_3
value: 27.383999999999997
- type: recall_at_5
value: 34.997
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (indonesian)
config: indonesian
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 28.669
- type: map_at_10
value: 41.611
- type: map_at_100
value: 42.522999999999996
- type: map_at_1000
value: 42.552
- type: map_at_20
value: 42.211
- type: map_at_3
value: 37.719
- type: map_at_5
value: 40.182
- type: mrr_at_1
value: 31.846000000000004
- type: mrr_at_10
value: 43.695
- type: mrr_at_100
value: 44.45
- type: mrr_at_1000
value: 44.474000000000004
- type: mrr_at_20
value: 44.214999999999996
- type: mrr_at_3
value: 40.31
- type: mrr_at_5
value: 42.469
- type: ndcg_at_1
value: 31.846000000000004
- type: ndcg_at_10
value: 48.416
- type: ndcg_at_100
value: 52.464999999999996
- type: ndcg_at_1000
value: 53.234
- type: ndcg_at_20
value: 50.468999999999994
- type: ndcg_at_3
value: 40.973
- type: ndcg_at_5
value: 45.163
- type: precision_at_1
value: 31.846000000000004
- type: precision_at_10
value: 7.768
- type: precision_at_100
value: 0.992
- type: precision_at_1000
value: 0.106
- type: precision_at_20
value: 4.343
- type: precision_at_3
value: 18.134
- type: precision_at_5
value: 13.221
- type: recall_at_1
value: 28.669
- type: recall_at_10
value: 67.29
- type: recall_at_100
value: 85.324
- type: recall_at_1000
value: 91.27499999999999
- type: recall_at_20
value: 75.111
- type: recall_at_3
value: 47.869
- type: recall_at_5
value: 57.620000000000005
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (ja)
config: ja
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 16.499
- type: map_at_10
value: 29.566
- type: map_at_100
value: 31.846999999999998
- type: map_at_1000
value: 31.968999999999998
- type: map_at_20
value: 30.758000000000003
- type: map_at_3
value: 24.954
- type: map_at_5
value: 27.195000000000004
- type: mrr_at_1
value: 27.093
- type: mrr_at_10
value: 40.861999999999995
- type: mrr_at_100
value: 41.926
- type: mrr_at_1000
value: 41.942
- type: mrr_at_20
value: 41.55
- type: mrr_at_3
value: 37.151
- type: mrr_at_5
value: 38.958999999999996
- type: ndcg_at_1
value: 27.093
- type: ndcg_at_10
value: 38.544
- type: ndcg_at_100
value: 47.143
- type: ndcg_at_1000
value: 48.802
- type: ndcg_at_20
value: 41.896
- type: ndcg_at_3
value: 31.249
- type: ndcg_at_5
value: 33.873999999999995
- type: precision_at_1
value: 27.093
- type: precision_at_10
value: 9.814
- type: precision_at_100
value: 1.737
- type: precision_at_1000
value: 0.2
- type: precision_at_20
value: 6.064
- type: precision_at_3
value: 19.147
- type: precision_at_5
value: 14.465
- type: recall_at_1
value: 16.499
- type: recall_at_10
value: 53.580000000000005
- type: recall_at_100
value: 86.792
- type: recall_at_1000
value: 96.61999999999999
- type: recall_at_20
value: 64.302
- type: recall_at_3
value: 33.588
- type: recall_at_5
value: 40.993
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (japanese)
config: japanese
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 16.644000000000002
- type: map_at_10
value: 25.667
- type: map_at_100
value: 26.926
- type: map_at_1000
value: 27.003
- type: map_at_20
value: 26.468000000000004
- type: map_at_3
value: 22.808999999999997
- type: map_at_5
value: 24.392
- type: mrr_at_1
value: 20.278
- type: mrr_at_10
value: 28.683999999999997
- type: mrr_at_100
value: 29.785
- type: mrr_at_1000
value: 29.839
- type: mrr_at_20
value: 29.391000000000002
- type: mrr_at_3
value: 26.25
- type: mrr_at_5
value: 27.479
- type: ndcg_at_1
value: 20.278
- type: ndcg_at_10
value: 31.130000000000003
- type: ndcg_at_100
value: 36.954
- type: ndcg_at_1000
value: 38.805
- type: ndcg_at_20
value: 33.856
- type: ndcg_at_3
value: 25.590000000000003
- type: ndcg_at_5
value: 28.136
- type: precision_at_1
value: 20.278
- type: precision_at_10
value: 5.611
- type: precision_at_100
value: 0.899
- type: precision_at_1000
value: 0.109
- type: precision_at_20
value: 3.465
- type: precision_at_3
value: 12.5
- type: precision_at_5
value: 8.972
- type: recall_at_1
value: 16.644000000000002
- type: recall_at_10
value: 44.931
- type: recall_at_100
value: 70.741
- type: recall_at_1000
value: 84.282
- type: recall_at_20
value: 55.022999999999996
- type: recall_at_3
value: 30.37
- type: recall_at_5
value: 36.134
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (ko)
config: ko
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 20.192
- type: map_at_10
value: 32.281
- type: map_at_100
value: 34.396
- type: map_at_1000
value: 34.604
- type: map_at_20
value: 33.495000000000005
- type: map_at_3
value: 27.489
- type: map_at_5
value: 30.022
- type: mrr_at_1
value: 34.742
- type: mrr_at_10
value: 46.117999999999995
- type: mrr_at_100
value: 47.066
- type: mrr_at_1000
value: 47.095
- type: mrr_at_20
value: 46.867
- type: mrr_at_3
value: 41.862
- type: mrr_at_5
value: 44.702999999999996
- type: ndcg_at_1
value: 34.742
- type: ndcg_at_10
value: 41.193999999999996
- type: ndcg_at_100
value: 48.691
- type: ndcg_at_1000
value: 51.364
- type: ndcg_at_20
value: 44.592999999999996
- type: ndcg_at_3
value: 35.004000000000005
- type: ndcg_at_5
value: 37.608000000000004
- type: precision_at_1
value: 34.742
- type: precision_at_10
value: 10.61
- type: precision_at_100
value: 1.8450000000000002
- type: precision_at_1000
value: 0.24
- type: precision_at_20
value: 6.5729999999999995
- type: precision_at_3
value: 20.657
- type: precision_at_5
value: 16.150000000000002
- type: recall_at_1
value: 20.192
- type: recall_at_10
value: 54.154
- type: recall_at_100
value: 80.49199999999999
- type: recall_at_1000
value: 94.61699999999999
- type: recall_at_20
value: 64.74
- type: recall_at_3
value: 34.288000000000004
- type: recall_at_5
value: 43.401
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (korean)
config: korean
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 22.288
- type: map_at_10
value: 30.096
- type: map_at_100
value: 30.866
- type: map_at_1000
value: 30.939
- type: map_at_20
value: 30.496000000000002
- type: map_at_3
value: 27.672
- type: map_at_5
value: 28.866000000000003
- type: mrr_at_1
value: 23.990000000000002
- type: mrr_at_10
value: 32.017
- type: mrr_at_100
value: 32.665
- type: mrr_at_1000
value: 32.726
- type: mrr_at_20
value: 32.348
- type: mrr_at_3
value: 29.572
- type: mrr_at_5
value: 30.808000000000003
- type: ndcg_at_1
value: 23.990000000000002
- type: ndcg_at_10
value: 34.823
- type: ndcg_at_100
value: 38.625
- type: ndcg_at_1000
value: 40.760999999999996
- type: ndcg_at_20
value: 36.138
- type: ndcg_at_3
value: 29.744999999999997
- type: ndcg_at_5
value: 31.884
- type: precision_at_1
value: 23.990000000000002
- type: precision_at_10
value: 5.297000000000001
- type: precision_at_100
value: 0.753
- type: precision_at_1000
value: 0.095
- type: precision_at_20
value: 2.981
- type: precision_at_3
value: 12.272
- type: precision_at_5
value: 8.551
- type: recall_at_1
value: 22.288
- type: recall_at_10
value: 47.743
- type: recall_at_100
value: 65.202
- type: recall_at_1000
value: 82.106
- type: recall_at_20
value: 52.534000000000006
- type: recall_at_3
value: 33.927
- type: recall_at_5
value: 38.915
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (ru)
config: ru
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 16.445
- type: map_at_10
value: 29.376
- type: map_at_100
value: 32.425
- type: map_at_1000
value: 32.589
- type: map_at_20
value: 30.973
- type: map_at_3
value: 24.026
- type: map_at_5
value: 26.831
- type: mrr_at_1
value: 31.8
- type: mrr_at_10
value: 44.454
- type: mrr_at_100
value: 45.534
- type: mrr_at_1000
value: 45.552
- type: mrr_at_20
value: 45.192
- type: mrr_at_3
value: 41.117
- type: mrr_at_5
value: 43.132
- type: ndcg_at_1
value: 31.8
- type: ndcg_at_10
value: 38.487
- type: ndcg_at_100
value: 48.705999999999996
- type: ndcg_at_1000
value: 50.732
- type: ndcg_at_20
value: 42.646
- type: ndcg_at_3
value: 31.922
- type: ndcg_at_5
value: 34.512
- type: precision_at_1
value: 31.8
- type: precision_at_10
value: 12.01
- type: precision_at_100
value: 2.325
- type: precision_at_1000
value: 0.27
- type: precision_at_20
value: 7.8549999999999995
- type: precision_at_3
value: 21.867
- type: precision_at_5
value: 17.46
- type: recall_at_1
value: 16.445
- type: recall_at_10
value: 48.691
- type: recall_at_100
value: 84.084
- type: recall_at_1000
value: 95.318
- type: recall_at_20
value: 60.873
- type: recall_at_3
value: 30.169
- type: recall_at_5
value: 38.3
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (russian)
config: russian
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 16.516000000000002
- type: map_at_10
value: 24.461
- type: map_at_100
value: 25.499
- type: map_at_1000
value: 25.569999999999997
- type: map_at_20
value: 25.063000000000002
- type: map_at_3
value: 21.669
- type: map_at_5
value: 23.285
- type: mrr_at_1
value: 18.09
- type: mrr_at_10
value: 26.311
- type: mrr_at_100
value: 27.195999999999998
- type: mrr_at_1000
value: 27.255000000000003
- type: mrr_at_20
value: 26.823000000000004
- type: mrr_at_3
value: 23.618
- type: mrr_at_5
value: 25.156
- type: ndcg_at_1
value: 18.09
- type: ndcg_at_10
value: 29.453000000000003
- type: ndcg_at_100
value: 34.44
- type: ndcg_at_1000
value: 36.336
- type: ndcg_at_20
value: 31.482
- type: ndcg_at_3
value: 23.830000000000002
- type: ndcg_at_5
value: 26.666
- type: precision_at_1
value: 18.09
- type: precision_at_10
value: 4.925
- type: precision_at_100
value: 0.768
- type: precision_at_1000
value: 0.094
- type: precision_at_20
value: 2.9250000000000003
- type: precision_at_3
value: 10.586
- type: precision_at_5
value: 7.839
- type: recall_at_1
value: 16.516000000000002
- type: recall_at_10
value: 43.166
- type: recall_at_100
value: 66.11399999999999
- type: recall_at_1000
value: 80.771
- type: recall_at_20
value: 50.804
- type: recall_at_3
value: 28.191
- type: recall_at_5
value: 34.925
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (es)
config: es
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 12.144
- type: map_at_10
value: 28.499999999999996
- type: map_at_100
value: 34.048
- type: map_at_1000
value: 34.268
- type: map_at_20
value: 31.401
- type: map_at_3
value: 20.459
- type: map_at_5
value: 24.245
- type: mrr_at_1
value: 41.975
- type: mrr_at_10
value: 54.525
- type: mrr_at_100
value: 55.359
- type: mrr_at_1000
value: 55.367
- type: mrr_at_20
value: 55.1
- type: mrr_at_3
value: 51.929
- type: mrr_at_5
value: 53.418
- type: ndcg_at_1
value: 41.975
- type: ndcg_at_10
value: 40.117000000000004
- type: ndcg_at_100
value: 54.102
- type: ndcg_at_1000
value: 56.191
- type: ndcg_at_20
value: 45.67
- type: ndcg_at_3
value: 37.505
- type: ndcg_at_5
value: 36.968
- type: precision_at_1
value: 41.975
- type: precision_at_10
value: 19.707
- type: precision_at_100
value: 4.003
- type: precision_at_1000
value: 0.44799999999999995
- type: precision_at_20
value: 13.272
- type: precision_at_3
value: 31.790000000000003
- type: precision_at_5
value: 26.667
- type: recall_at_1
value: 12.144
- type: recall_at_10
value: 44.92
- type: recall_at_100
value: 86.141
- type: recall_at_1000
value: 96.234
- type: recall_at_20
value: 58.194
- type: recall_at_3
value: 24.733
- type: recall_at_5
value: 32.385000000000005
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (sw)
config: sw
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 21.401
- type: map_at_10
value: 34.205000000000005
- type: map_at_100
value: 35.571000000000005
- type: map_at_1000
value: 35.682
- type: map_at_20
value: 35.077000000000005
- type: map_at_3
value: 30.706
- type: map_at_5
value: 32.902
- type: mrr_at_1
value: 32.78
- type: mrr_at_10
value: 44.205
- type: mrr_at_100
value: 45.013
- type: mrr_at_1000
value: 45.055
- type: mrr_at_20
value: 44.726
- type: mrr_at_3
value: 41.909
- type: mrr_at_5
value: 43.434
- type: ndcg_at_1
value: 32.78
- type: ndcg_at_10
value: 41.385
- type: ndcg_at_100
value: 46.568
- type: ndcg_at_1000
value: 48.881
- type: ndcg_at_20
value: 43.872
- type: ndcg_at_3
value: 36.634
- type: ndcg_at_5
value: 38.964999999999996
- type: precision_at_1
value: 32.78
- type: precision_at_10
value: 8.859
- type: precision_at_100
value: 1.32
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_20
value: 5.27
- type: precision_at_3
value: 20.608999999999998
- type: precision_at_5
value: 14.979000000000001
- type: recall_at_1
value: 21.401
- type: recall_at_10
value: 52.471000000000004
- type: recall_at_100
value: 72.069
- type: recall_at_1000
value: 87.996
- type: recall_at_20
value: 60.589999999999996
- type: recall_at_3
value: 39.28
- type: recall_at_5
value: 46.015
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (swahili)
config: swahili
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 29.005
- type: map_at_10
value: 40.907
- type: map_at_100
value: 41.557
- type: map_at_1000
value: 41.604
- type: map_at_20
value: 41.234
- type: map_at_3
value: 38.114
- type: map_at_5
value: 39.6
- type: mrr_at_1
value: 30.597
- type: mrr_at_10
value: 42
- type: mrr_at_100
value: 42.557
- type: mrr_at_1000
value: 42.601
- type: mrr_at_20
value: 42.272999999999996
- type: mrr_at_3
value: 39.378
- type: mrr_at_5
value: 40.759
- type: ndcg_at_1
value: 30.597
- type: ndcg_at_10
value: 46.864
- type: ndcg_at_100
value: 50.099000000000004
- type: ndcg_at_1000
value: 51.354
- type: ndcg_at_20
value: 47.94
- type: ndcg_at_3
value: 41.234
- type: ndcg_at_5
value: 43.822
- type: precision_at_1
value: 30.597
- type: precision_at_10
value: 6.984999999999999
- type: precision_at_100
value: 0.8750000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_20
value: 3.7310000000000003
- type: precision_at_3
value: 17.463
- type: precision_at_5
value: 11.91
- type: recall_at_1
value: 29.005
- type: recall_at_10
value: 64.20400000000001
- type: recall_at_100
value: 79.403
- type: recall_at_1000
value: 89.104
- type: recall_at_20
value: 68.234
- type: recall_at_3
value: 49.055
- type: recall_at_5
value: 55.149
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (te)
config: te
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 40.781
- type: map_at_10
value: 53.428
- type: map_at_100
value: 54.118
- type: map_at_1000
value: 54.135999999999996
- type: map_at_20
value: 53.873000000000005
- type: map_at_3
value: 50.205
- type: map_at_5
value: 52.356
- type: mrr_at_1
value: 41.184
- type: mrr_at_10
value: 53.74100000000001
- type: mrr_at_100
value: 54.388999999999996
- type: mrr_at_1000
value: 54.406
- type: mrr_at_20
value: 54.151
- type: mrr_at_3
value: 50.664
- type: mrr_at_5
value: 52.717000000000006
- type: ndcg_at_1
value: 41.184
- type: ndcg_at_10
value: 59.614999999999995
- type: ndcg_at_100
value: 62.875
- type: ndcg_at_1000
value: 63.368
- type: ndcg_at_20
value: 61.168
- type: ndcg_at_3
value: 53.322
- type: ndcg_at_5
value: 57.079
- type: precision_at_1
value: 41.184
- type: precision_at_10
value: 8.043
- type: precision_at_100
value: 0.963
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 4.342
- type: precision_at_3
value: 20.934
- type: precision_at_5
value: 14.469000000000001
- type: recall_at_1
value: 40.781
- type: recall_at_10
value: 78.523
- type: recall_at_100
value: 93.639
- type: recall_at_1000
value: 97.504
- type: recall_at_20
value: 84.56099999999999
- type: recall_at_3
value: 61.895999999999994
- type: recall_at_5
value: 70.79299999999999
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (telugu)
config: telugu
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 43.344
- type: map_at_10
value: 56.452000000000005
- type: map_at_100
value: 57.108000000000004
- type: map_at_1000
value: 57.131
- type: map_at_20
value: 56.86600000000001
- type: map_at_3
value: 54.154
- type: map_at_5
value: 55.57
- type: mrr_at_1
value: 44.427
- type: mrr_at_10
value: 57.16
- type: mrr_at_100
value: 57.764
- type: mrr_at_1000
value: 57.785
- type: mrr_at_20
value: 57.548
- type: mrr_at_3
value: 55.031
- type: mrr_at_5
value: 56.330999999999996
- type: ndcg_at_1
value: 44.427
- type: ndcg_at_10
value: 62.208
- type: ndcg_at_100
value: 65.33099999999999
- type: ndcg_at_1000
value: 65.96
- type: ndcg_at_20
value: 63.671
- type: ndcg_at_3
value: 57.68600000000001
- type: ndcg_at_5
value: 60.126999999999995
- type: precision_at_1
value: 44.427
- type: precision_at_10
value: 8.251
- type: precision_at_100
value: 0.98
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_20
value: 4.42
- type: precision_at_3
value: 23.116999999999997
- type: precision_at_5
value: 15.076999999999998
- type: recall_at_1
value: 43.344
- type: recall_at_10
value: 79.10199999999999
- type: recall_at_100
value: 93.57600000000001
- type: recall_at_1000
value: 98.529
- type: recall_at_20
value: 84.83000000000001
- type: recall_at_3
value: 67.02799999999999
- type: recall_at_5
value: 72.833
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (th)
config: th
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 27.747
- type: map_at_10
value: 43.586999999999996
- type: map_at_100
value: 45.256
- type: map_at_1000
value: 45.339
- type: map_at_20
value: 44.628
- type: map_at_3
value: 38.751999999999995
- type: map_at_5
value: 41.510000000000005
- type: mrr_at_1
value: 40.791
- type: mrr_at_10
value: 53.551
- type: mrr_at_100
value: 54.31
- type: mrr_at_1000
value: 54.32599999999999
- type: mrr_at_20
value: 54.057
- type: mrr_at_3
value: 50.637
- type: mrr_at_5
value: 52.525999999999996
- type: ndcg_at_1
value: 40.791
- type: ndcg_at_10
value: 52.144999999999996
- type: ndcg_at_100
value: 57.977000000000004
- type: ndcg_at_1000
value: 59.24
- type: ndcg_at_20
value: 54.864999999999995
- type: ndcg_at_3
value: 45.074
- type: ndcg_at_5
value: 48.504999999999995
- type: precision_at_1
value: 40.791
- type: precision_at_10
value: 11.350999999999999
- type: precision_at_100
value: 1.6039999999999999
- type: precision_at_1000
value: 0.178
- type: precision_at_20
value: 6.589
- type: precision_at_3
value: 25.239
- type: precision_at_5
value: 18.526999999999997
- type: recall_at_1
value: 27.747
- type: recall_at_10
value: 66.752
- type: recall_at_100
value: 89.51400000000001
- type: recall_at_1000
value: 97.485
- type: recall_at_20
value: 75.658
- type: recall_at_3
value: 48.393
- type: recall_at_5
value: 56.977
- task:
type: retrieval
dataset:
type: mteb/mrtydi
name: MTEB MrTydiRetrieval (thai)
config: thai
split: test
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
metrics:
- type: map_at_1
value: 28.810000000000002
- type: map_at_10
value: 41.803000000000004
- type: map_at_100
value: 42.818
- type: map_at_1000
value: 42.861
- type: map_at_20
value: 42.487
- type: map_at_3
value: 37.719
- type: map_at_5
value: 40.143
- type: mrr_at_1
value: 31.596999999999998
- type: mrr_at_10
value: 43.784
- type: mrr_at_100
value: 44.647
- type: mrr_at_1000
value: 44.681
- type: mrr_at_20
value: 44.385000000000005
- type: mrr_at_3
value: 40.266000000000005
- type: mrr_at_5
value: 42.266
- type: ndcg_at_1
value: 31.596999999999998
- type: ndcg_at_10
value: 48.874
- type: ndcg_at_100
value: 53.285000000000004
- type: ndcg_at_1000
value: 54.398
- type: ndcg_at_20
value: 51.188
- type: ndcg_at_3
value: 41.010000000000005
- type: ndcg_at_5
value: 45.054
- type: precision_at_1
value: 31.596999999999998
- type: precision_at_10
value: 7.747999999999999
- type: precision_at_100
value: 1.008
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_20
value: 4.382
- type: precision_at_3
value: 17.619
- type: precision_at_5
value: 12.806999999999999
- type: recall_at_1
value: 28.810000000000002
- type: recall_at_10
value: 68.88
- type: recall_at_100
value: 88.263
- type: recall_at_1000
value: 96.765
- type: recall_at_20
value: 77.647
- type: recall_at_3
value: 48.137
- type: recall_at_5
value: 57.577
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (yo)
config: yo
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 16.387
- type: map_at_10
value: 23.988
- type: map_at_100
value: 24.65
- type: map_at_1000
value: 24.725
- type: map_at_20
value: 24.310000000000002
- type: map_at_3
value: 21.23
- type: map_at_5
value: 23.093
- type: mrr_at_1
value: 17.647
- type: mrr_at_10
value: 26.144000000000002
- type: mrr_at_100
value: 26.751
- type: mrr_at_1000
value: 26.804
- type: mrr_at_20
value: 26.43
- type: mrr_at_3
value: 23.669
- type: mrr_at_5
value: 25.392
- type: ndcg_at_1
value: 17.647
- type: ndcg_at_10
value: 28.583
- type: ndcg_at_100
value: 31.790000000000003
- type: ndcg_at_1000
value: 33.705
- type: ndcg_at_20
value: 29.669
- type: ndcg_at_3
value: 23.271
- type: ndcg_at_5
value: 26.509
- type: precision_at_1
value: 17.647
- type: precision_at_10
value: 4.79
- type: precision_at_100
value: 0.655
- type: precision_at_1000
value: 0.08499999999999999
- type: precision_at_20
value: 2.6470000000000002
- type: precision_at_3
value: 10.363999999999999
- type: precision_at_5
value: 7.899000000000001
- type: recall_at_1
value: 16.387
- type: recall_at_10
value: 40.476
- type: recall_at_100
value: 55.11200000000001
- type: recall_at_1000
value: 69.538
- type: recall_at_20
value: 44.538
- type: recall_at_3
value: 26.540999999999997
- type: recall_at_5
value: 34.384
- task:
type: retrieval
dataset:
type: mteb/miracl-hard-negatives
name: MTEB MIRACLRetrievalHardNegatives (zh)
config: zh
split: dev
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
metrics:
- type: map_at_1
value: 13.971
- type: map_at_10
value: 27.076
- type: map_at_100
value: 30.128
- type: map_at_1000
value: 30.25
- type: map_at_20
value: 28.731
- type: map_at_3
value: 21.029999999999998
- type: map_at_5
value: 23.769000000000002
- type: mrr_at_1
value: 26.717999999999996
- type: mrr_at_10
value: 40.331
- type: mrr_at_100
value: 41.448
- type: mrr_at_1000
value: 41.461999999999996
- type: mrr_at_20
value: 41.103
- type: mrr_at_3
value: 36.302
- type: mrr_at_5
value: 38.414
- type: ndcg_at_1
value: 26.717999999999996
- type: ndcg_at_10
value: 36.744
- type: ndcg_at_100
value: 47.361
- type: ndcg_at_1000
value: 48.869
- type: ndcg_at_20
value: 41.097
- type: ndcg_at_3
value: 28.322000000000003
- type: ndcg_at_5
value: 30.875999999999998
- type: precision_at_1
value: 26.717999999999996
- type: precision_at_10
value: 11.679
- type: precision_at_100
value: 2.2159999999999997
- type: precision_at_1000
value: 0.248
- type: precision_at_20
value: 7.545
- type: precision_at_3
value: 20.102
- type: precision_at_5
value: 16.131999999999998
- type: recall_at_1
value: 13.971
- type: recall_at_10
value: 50.763999999999996
- type: recall_at_100
value: 89.666
- type: recall_at_1000
value: 98.038
- type: recall_at_20
value: 64.1
- type: recall_at_3
value: 27.16
- type: recall_at_5
value: 35.022999999999996
widget:
- source_sentence: ما هي أفضل الفنادق في ايبوهبالقرب من Ipoh Parade Shopping Centre؟
sentences:
- >-
Bei ORION gibt es eine Sale-Rubrik, in der alle reduzierten Artikel zu
finden sind. Wenn du also auf der Suche nach einem Schnäppchen bist,
weißt du, an welcher Stelle auf der Webseite du fündig wirst. Der Sale
umfasst viele verschiedene Produke. Von Toys bis hin zu Dessous und
Drogerieartikel - es spielt keine Rolle, wonach du suchst. Aufgrund der
Produktvielfalt ist die Chance, dass du im Sale den passenden Gegenstand
findest, groß.
- عادة ما يكون لأصحاب النفوذ الجزئي ما بين 10000 و 100000 متابع.
- >-
المسافرون الموثّقون إلى مدينة ايبوه الذين أقاموا قرب Ipoh Parade
Shopping Centre أعطوا أعلى التقييمات لـفندق فايل ، Zone Hotel (Ipoh)
وGolden Roof Hotel Ampang Ipoh.
- source_sentence: Habe ich Vorteile, wenn ich früh in das Projekt einsteige?
sentences:
- >-
نعم لدينا خصومات مُتعددة على جميع أعمال السواتر والمظلات والجلسات ففي
فصل الشتاء والصيف هناك خصومات مُتعددة في الأعياد والمناسبات
- >-
Der Vorteil einer frühen Mitgliedschaft besteht in der Möglichkeit der
Mitgestaltung des Projektes. Alle später Hinzukommenden müssen die bis
dahin getroffenen Entscheidungen akzeptieren. Zudem entscheidet unter
anderem auch das Eintrittsdatum in die eG und das Engagement während des
Projektverlaufes über die spätere Reihenfolge der Vergabe der Wohnungen.
- >-
Средняя оценка Registered от клиентов – 4 на основе 227 оценок и
отзывов. Заходите на сайт и прочитайте реальные отзывы о Registered.
- source_sentence: В какое время доступны ваши технические услуги?
sentences:
- >-
Наша команда технической поддержки обеспечивает круглосуточное
обслуживание в случае чрезвычайных ситуаций. Вы можете связаться с нами
в любой день недели, в любое время суток и получить поддержку для ваших
холодильных систем. Услуги по плановому техническому обслуживанию и
ремонту предоставляются в обычное рабочее время, а услуги
предоставляются в экстренных случаях, в том числе в ночное время и в
выходные дни.
- >-
این سوال کاملا به علاقه و مهارت شما بستگی دارد. اگر به درس شیمی علاقه
زیادی دارید این رشته بهترین انتخاب برای تحصیل در دانشگاه برای شما محسوب
میشود.
- |-
eo光は10Gを提供している光回線です。
提供エリアは、通常プランと変わらず関西地方と福井県です。しかし、一部の利用できないエリアもあるので契約前に確認しましょう。
関連記事
eo光の10Gプランの評判口コミ
- source_sentence: Supertotobet redtiger oyun çeşitleri hangileri?
sentences:
- >-
Supertotobet redtiger oyunları arasında gold star, golden tsar, golden
lotus, blood suckers ve redtiger slot gibi çeşitli oyunlar vardır. Bu
oyun seçeneklerini kullanabilmek için oyunlar hakkında bilgi sahibi
olmalısınız.
- >-
Время выполнения проекта зависит от его сложности и размера. Обычно,
время выполнения проекта составляет несколько месяцев.
- >-
Wer kein Homeoffice während des Coronavirus anbieten kann, ist dazu
verpflichtet, Schutzmaßnahmen zu ergreifen.
Die Arbeitsschutzbehörden der Länder sind befugt, Corona-Schutzmaßnahmen
in Betrieben zu kontrollieren und Fehlverhalten zu bestrafen. Bei
Verstößen sind Bußgelder in Höhe von bis zu 30.000 Euro möglich.
Wiederholen sich schwere Verstöße, droht den Verantwortlichen sogar bis
zu einem Jahr Freiheitsstrafe.
Arbeitgeber, die die Vorschriften missachten, könnten zudem dafür
haften, wenn Mitarbeiter durch eine Corona-Infektion gesundheitliche
Schäden erleiden.
- source_sentence: Muss der Deckel der TipBox beim Autoklavieren geöffnet werden?
sentences:
- >-
ВВП (валовый внутренний продукт) - это общая стоимость всех товаров и
услуг, произведенных в стране за определенный период времени. Он
является ключевым экономическим показателем, который отражает общий
уровень экономической активности и роста. Инвесторы следят за ВВП, чтобы
оценить состояние и перспективы экономики, потенциал для роста и
возможности для инвестиций
- >-
برآمدگی های بیضه ممکن است نشان دهنده مشکلی در بیضه ها باشد. ممکن است به
دلیل صدمه ای به وجود آمده یا ممکن است یک مشکل پزشکی جدی باشد.
- >-
Nein, das ist nicht notwendig. Die neue TipBox kann bei 121°C im
geschlossenen Zustand autoklaviert werden.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: mit
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: XLM-RoBERTa-base-MSMARCO
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset: WebFAQ Retrieval Dataset
- License: MIT
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PaDaS-Lab/xlm-roberta-base-msmarco-webfaq")
# Run inference
sentences = [
'Muss der Deckel der TipBox beim Autoklavieren geöffnet werden?',
'Nein, das ist nicht notwendig. Die neue TipBox kann bei 121°C im geschlossenen Zustand autoklaviert werden.',
'برآمدگی های بیضه ممکن است نشان دهنده مشکلی در بیضه ها باشد. ممکن است به دلیل صدمه ای به وجود آمده یا ممکن است یک مشکل پزشکی جدی باشد.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,560,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 15.02 tokens
- max: 86 tokens
- min: 11 tokens
- mean: 66.82 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 Hat myTime ein großes Produktsortiment?
Das Sortiment von myTime umfasst mehr als 13.000 Lebensmittel. Du findest alle Produkte, die du auch im Supermarkt findest, darunter Obst und Gemüse, trockene Lebensmittel wie Pasta und Reis, Backwaren, Snacks und Tiefkühlkost. Auch Getränke wie Kaffee, Alkohol und Soda findest du im Online-Supermarkt.
Gibt es eine Tigerspin App?
Tigerspin verzichtet auf eine mobile App. Wenn Sie ein paar Runden spielen möchten, öffnen Sie einfach die Webseite des Casinos und starten die Spiele im Browser.
Bietet ihr auch maschinelle Übersetzungen an? Wenn ja, wann eignet sich diese und wann nicht?
Maschinelle Übersetzungen sind ein spannendes Thema, auch aktuell bei techtrans. Unter maschineller Übersetzung (MÜ) versteht man die automatisierte Übertragung eines Ausgangstextes in die Zielsprache mittels einer sogenannten Übersetzungsengine. Eine solche Engine kann nach regelbasierten, statistischen oder neuronalen Prinzipien aufgebaut sein.
Obwohl es maschinelle Übersetzungsengines schon seit einigen Jahrzehnten gibt, ist erst mit der Einführung der neuronalen Engines (NMT) ca. ab dem Jahre 2015 die Output-Qualität gestiegen. Namhafte Engine Provider sind zum Beispiel Google, DeepL, Microsoft, Amazon AWS und SDL. So ist es kaum verwunderlich, dass diese Technologie zunehmend Einzug sowohl in unseren Alltag als auch in den Übersetzungsprozess findet. - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.025 | 500 | 0.1999 |
0.05 | 1000 | 0.0279 |
0.075 | 1500 | 0.0234 |
0.1 | 2000 | 0.0203 |
0.125 | 2500 | 0.0179 |
0.15 | 3000 | 0.0171 |
0.175 | 3500 | 0.0153 |
0.2 | 4000 | 0.015 |
0.225 | 4500 | 0.0143 |
0.25 | 5000 | 0.014 |
0.275 | 5500 | 0.0128 |
0.3 | 6000 | 0.013 |
0.325 | 6500 | 0.0129 |
0.35 | 7000 | 0.0124 |
0.375 | 7500 | 0.012 |
0.4 | 8000 | 0.0121 |
0.425 | 8500 | 0.0115 |
0.45 | 9000 | 0.0113 |
0.475 | 9500 | 0.0106 |
0.5 | 10000 | 0.0107 |
0.525 | 10500 | 0.011 |
0.55 | 11000 | 0.0108 |
0.575 | 11500 | 0.0103 |
0.6 | 12000 | 0.0097 |
0.625 | 12500 | 0.01 |
0.65 | 13000 | 0.0104 |
0.675 | 13500 | 0.0096 |
0.7 | 14000 | 0.0096 |
0.725 | 14500 | 0.0097 |
0.75 | 15000 | 0.0097 |
0.775 | 15500 | 0.0089 |
0.8 | 16000 | 0.0089 |
0.825 | 16500 | 0.0091 |
0.85 | 17000 | 0.0085 |
0.875 | 17500 | 0.0084 |
0.9 | 18000 | 0.0089 |
0.925 | 18500 | 0.0087 |
0.95 | 19000 | 0.0087 |
0.975 | 19500 | 0.0088 |
1.0 | 20000 | 0.0089 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.4.0
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
WebFAQ Dataset
@misc{dinzinger2025webfaq,
title={WebFAQ: A Multilingual Collection of Natural Q&A Datasets for Dense Retrieval},
author={Michael Dinzinger and Laura Caspari and Kanishka Ghosh Dastidar and Jelena Mitrović and Michael Granitzer},
year={2025},
eprint={2502.20936},
archivePrefix={arXiv},
primaryClass={cs.CL}
}