|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, List |
|
|
|
import pytest |
|
from transformers import DataCollatorWithPadding |
|
|
|
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer |
|
from llamafactory.hparams import get_train_args |
|
from llamafactory.model import load_model, load_tokenizer |
|
from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer |
|
|
|
|
|
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") |
|
|
|
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "lora", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": False, |
|
"overwrite_output_dir": True, |
|
"per_device_train_batch_size": 1, |
|
"max_steps": 1, |
|
} |
|
|
|
|
|
@dataclass |
|
class DataCollatorWithVerbose(DataCollatorWithPadding): |
|
verbose_list: List[Dict[str, Any]] = field(default_factory=list) |
|
|
|
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]: |
|
self.verbose_list.extend(features) |
|
batch = super().__call__(features) |
|
return {k: v[:, :1] for k, v in batch.items()} |
|
|
|
|
|
@pytest.mark.parametrize("disable_shuffling", [False, True]) |
|
def test_shuffle(disable_shuffling: bool): |
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args( |
|
{ |
|
"output_dir": os.path.join("output", f"shuffle{str(disable_shuffling).lower()}"), |
|
"disable_shuffling": disable_shuffling, |
|
**TRAIN_ARGS, |
|
} |
|
) |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
template = get_template_and_fix_tokenizer(tokenizer, data_args) |
|
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) |
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) |
|
data_collator = DataCollatorWithVerbose(tokenizer=tokenizer) |
|
trainer = CustomSeq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
finetuning_args=finetuning_args, |
|
data_collator=data_collator, |
|
**dataset_module, |
|
**tokenizer_module, |
|
) |
|
trainer.train() |
|
if disable_shuffling: |
|
assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"] |
|
else: |
|
assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"] |
|
|