# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import dataclass, field from typing import Any, Dict, List import pytest from transformers import DataCollatorWithPadding from llamafactory.data import get_dataset, get_template_and_fix_tokenizer from llamafactory.hparams import get_train_args from llamafactory.model import load_model, load_tokenizer from llamafactory.train.sft.trainer import CustomSeq2SeqTrainer DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data") TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "sft", "do_train": True, "finetuning_type": "lora", "dataset": "llamafactory/tiny-supervised-dataset", "dataset_dir": "ONLINE", "template": "llama3", "cutoff_len": 1024, "overwrite_cache": False, "overwrite_output_dir": True, "per_device_train_batch_size": 1, "max_steps": 1, } @dataclass class DataCollatorWithVerbose(DataCollatorWithPadding): verbose_list: List[Dict[str, Any]] = field(default_factory=list) def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]: self.verbose_list.extend(features) batch = super().__call__(features) return {k: v[:, :1] for k, v in batch.items()} # truncate input length @pytest.mark.parametrize("disable_shuffling", [False, True]) def test_shuffle(disable_shuffling: bool): model_args, data_args, training_args, finetuning_args, _ = get_train_args( { "output_dir": os.path.join("output", f"shuffle{str(disable_shuffling).lower()}"), "disable_shuffling": disable_shuffling, **TRAIN_ARGS, } ) tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) data_collator = DataCollatorWithVerbose(tokenizer=tokenizer) trainer = CustomSeq2SeqTrainer( model=model, args=training_args, finetuning_args=finetuning_args, data_collator=data_collator, **dataset_module, **tokenizer_module, ) trainer.train() if disable_shuffling: assert data_collator.verbose_list[0]["input_ids"] == dataset_module["train_dataset"][0]["input_ids"] else: assert data_collator.verbose_list[0]["input_ids"] != dataset_module["train_dataset"][0]["input_ids"]