|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import TYPE_CHECKING, Sequence |
|
|
|
import pytest |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.data import get_template_and_fix_tokenizer |
|
from llamafactory.data.template import parse_template |
|
from llamafactory.hparams import DataArguments |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
MESSAGES = [ |
|
{"role": "user", "content": "How are you"}, |
|
{"role": "assistant", "content": "I am fine!"}, |
|
{"role": "user", "content": "你好"}, |
|
{"role": "assistant", "content": "很高兴认识你!"}, |
|
] |
|
|
|
|
|
def _check_tokenization( |
|
tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str] |
|
) -> None: |
|
r""" |
|
Checks token ids and texts. |
|
|
|
encode(text) == token_ids |
|
decode(token_ids) == text |
|
""" |
|
for input_ids, text in zip(batch_input_ids, batch_text): |
|
assert tokenizer.encode(text, add_special_tokens=False) == input_ids |
|
assert tokenizer.decode(input_ids) == text |
|
|
|
|
|
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, use_fast: bool) -> None: |
|
r""" |
|
Checks template. |
|
|
|
Args: |
|
model_id: the model id on hugging face hub. |
|
template_name: the template name. |
|
prompt_str: the string corresponding to the prompt part. |
|
answer_str: the string corresponding to the answer part. |
|
use_fast: whether to use fast tokenizer. |
|
""" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN) |
|
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False) |
|
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name)) |
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) |
|
assert content_str == prompt_str + answer_str |
|
assert content_ids == prompt_ids + answer_ids |
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_encode_oneturn(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) |
|
prompt_str = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str = "很高兴认识你!<|eot_id|>" |
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_encode_multiturn(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) |
|
prompt_str_1 = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str_1 = "I am fine!<|eot_id|>" |
|
prompt_str_2 = ( |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str_2 = "很高兴认识你!<|eot_id|>" |
|
_check_tokenization( |
|
tokenizer, |
|
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]), |
|
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2), |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_jinja_template(use_fast: bool): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
tokenizer.chat_template = template._get_jinja_template(tokenizer) |
|
assert tokenizer.chat_template != ref_tokenizer.chat_template |
|
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES) |
|
|
|
|
|
def test_ollama_modelfile(): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
assert template.get_ollama_modelfile(tokenizer) == ( |
|
"# ollama modelfile auto-generated by llamafactory\n\n" |
|
"FROM .\n\n" |
|
'TEMPLATE """<|begin_of_text|>' |
|
"{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}" |
|
'{{ range .Messages }}{{ if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Content }}' |
|
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" |
|
'{{ else if eq .Role "assistant" }}{{ .Content }}<|eot_id|>{{ end }}{{ end }}"""\n\n' |
|
'PARAMETER stop "<|eom_id|>"\n' |
|
'PARAMETER stop "<|eot_id|>"\n' |
|
"PARAMETER num_ctx 4096\n" |
|
) |
|
|
|
|
|
def test_get_stop_token_ids(): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3")) |
|
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009} |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_gemma_template(use_fast: bool): |
|
prompt_str = ( |
|
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n" |
|
"<start_of_turn>model\nI am fine!<end_of_turn>\n" |
|
"<start_of_turn>user\n你好<end_of_turn>\n" |
|
"<start_of_turn>model\n" |
|
) |
|
answer_str = "很高兴认识你!<end_of_turn>\n" |
|
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, use_fast) |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_llama3_template(use_fast: bool): |
|
prompt_str = ( |
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
answer_str = "很高兴认识你!<|eot_id|>" |
|
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast) |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
@pytest.mark.parametrize( |
|
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken."))] |
|
) |
|
def test_phi4_template(use_fast: bool): |
|
prompt_str = ( |
|
"<|im_start|>user<|im_sep|>How are you<|im_end|>" |
|
"<|im_start|>assistant<|im_sep|>I am fine!<|im_end|>" |
|
"<|im_start|>user<|im_sep|>你好<|im_end|>" |
|
"<|im_start|>assistant<|im_sep|>" |
|
) |
|
answer_str = "很高兴认识你!<|im_end|>" |
|
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast) |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
def test_qwen_template(use_fast: bool): |
|
prompt_str = ( |
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" |
|
"<|im_start|>user\nHow are you<|im_end|>\n" |
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n" |
|
"<|im_start|>user\n你好<|im_end|>\n" |
|
"<|im_start|>assistant\n" |
|
) |
|
answer_str = "很高兴认识你!<|im_end|>\n" |
|
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, use_fast) |
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False]) |
|
@pytest.mark.xfail(reason="Yi tokenizer is broken.") |
|
def test_yi_template(use_fast: bool): |
|
prompt_str = ( |
|
"<|im_start|>user\nHow are you<|im_end|>\n" |
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n" |
|
"<|im_start|>user\n你好<|im_end|>\n" |
|
"<|im_start|>assistant\n" |
|
) |
|
answer_str = "很高兴认识你!<|im_end|>\n" |
|
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str, use_fast) |
|
|
|
|
|
def test_parse_template(): |
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, token=HF_TOKEN) |
|
template = parse_template(tokenizer) |
|
assert template.format_user.slots == [ |
|
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
] |
|
assert template.format_assistant.slots == ["{{content}}<|eot_id|>"] |
|
assert template.format_system.slots == ["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"] |
|
assert template.format_prefix.slots == ["<|begin_of_text|>"] |
|
assert template.default_system == "" |
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") |
|
def test_parse_qwen_template(): |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct", token=HF_TOKEN) |
|
template = parse_template(tokenizer) |
|
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"] |
|
assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"] |
|
assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"] |
|
assert template.format_prefix.slots == [] |
|
assert template.default_system == "You are a helpful assistant." |
|
|