File size: 10,336 Bytes
93adfea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Sequence
import pytest
from transformers import AutoTokenizer
from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.template import parse_template
from llamafactory.hparams import DataArguments
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
HF_TOKEN = os.getenv("HF_TOKEN")
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
MESSAGES = [
{"role": "user", "content": "How are you"},
{"role": "assistant", "content": "I am fine!"},
{"role": "user", "content": "你好"},
{"role": "assistant", "content": "很高兴认识你!"},
]
def _check_tokenization(
tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str]
) -> None:
r"""
Checks token ids and texts.
encode(text) == token_ids
decode(token_ids) == text
"""
for input_ids, text in zip(batch_input_ids, batch_text):
assert tokenizer.encode(text, add_special_tokens=False) == input_ids
assert tokenizer.decode(input_ids) == text
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, use_fast: bool) -> None:
r"""
Checks template.
Args:
model_id: the model id on hugging face hub.
template_name: the template name.
prompt_str: the string corresponding to the prompt part.
answer_str: the string corresponding to the answer part.
use_fast: whether to use fast tokenizer.
"""
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
assert content_str == prompt_str + answer_str
assert content_ids == prompt_ids + answer_ids
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_oneturn(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
prompt_str = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str = "很高兴认识你!<|eot_id|>"
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_multiturn(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
prompt_str_1 = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str_1 = "I am fine!<|eot_id|>"
prompt_str_2 = (
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str_2 = "很高兴认识你!<|eot_id|>"
_check_tokenization(
tokenizer,
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
)
@pytest.mark.parametrize("use_fast", [True, False])
def test_jinja_template(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
tokenizer.chat_template = template._get_jinja_template(tokenizer) # llama3 template no replace
assert tokenizer.chat_template != ref_tokenizer.chat_template
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
def test_ollama_modelfile():
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
assert template.get_ollama_modelfile(tokenizer) == (
"# ollama modelfile auto-generated by llamafactory\n\n"
"FROM .\n\n"
'TEMPLATE """<|begin_of_text|>'
"{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}"
'{{ range .Messages }}{{ if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Content }}'
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
'{{ else if eq .Role "assistant" }}{{ .Content }}<|eot_id|>{{ end }}{{ end }}"""\n\n'
'PARAMETER stop "<|eom_id|>"\n'
'PARAMETER stop "<|eot_id|>"\n'
"PARAMETER num_ctx 4096\n"
)
def test_get_stop_token_ids():
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
assert set(template.get_stop_token_ids(tokenizer)) == {128008, 128009}
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
@pytest.mark.parametrize("use_fast", [True, False])
def test_gemma_template(use_fast: bool):
prompt_str = (
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
"<start_of_turn>model\nI am fine!<end_of_turn>\n"
"<start_of_turn>user\n你好<end_of_turn>\n"
"<start_of_turn>model\n"
)
answer_str = "很高兴认识你!<end_of_turn>\n"
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, use_fast)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
@pytest.mark.parametrize("use_fast", [True, False])
def test_llama3_template(use_fast: bool):
prompt_str = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str = "很高兴认识你!<|eot_id|>"
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str, use_fast)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
@pytest.mark.parametrize(
"use_fast", [True, pytest.param(False, marks=pytest.mark.xfail(reason="Phi-4 slow tokenizer is broken."))]
)
def test_phi4_template(use_fast: bool):
prompt_str = (
"<|im_start|>user<|im_sep|>How are you<|im_end|>"
"<|im_start|>assistant<|im_sep|>I am fine!<|im_end|>"
"<|im_start|>user<|im_sep|>你好<|im_end|>"
"<|im_start|>assistant<|im_sep|>"
)
answer_str = "很高兴认识你!<|im_end|>"
_check_template("microsoft/phi-4", "phi4", prompt_str, answer_str, use_fast)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") # TODO: why it is gated?
@pytest.mark.parametrize("use_fast", [True, False])
def test_qwen_template(use_fast: bool):
prompt_str = (
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\nHow are you<|im_end|>\n"
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
"<|im_start|>user\n你好<|im_end|>\n"
"<|im_start|>assistant\n"
)
answer_str = "很高兴认识你!<|im_end|>\n"
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, use_fast)
@pytest.mark.parametrize("use_fast", [True, False])
@pytest.mark.xfail(reason="Yi tokenizer is broken.")
def test_yi_template(use_fast: bool):
prompt_str = (
"<|im_start|>user\nHow are you<|im_end|>\n"
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
"<|im_start|>user\n你好<|im_end|>\n"
"<|im_start|>assistant\n"
)
answer_str = "很高兴认识你!<|im_end|>\n"
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str, use_fast)
def test_parse_template():
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, token=HF_TOKEN)
template = parse_template(tokenizer)
assert template.format_user.slots == [
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
]
assert template.format_assistant.slots == ["{{content}}<|eot_id|>"]
assert template.format_system.slots == ["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]
assert template.format_prefix.slots == ["<|begin_of_text|>"]
assert template.default_system == ""
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_parse_qwen_template():
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct", token=HF_TOKEN)
template = parse_template(tokenizer)
assert template.format_user.slots == ["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]
assert template.format_assistant.slots == ["{{content}}<|im_end|>\n"]
assert template.format_system.slots == ["<|im_start|>system\n{{content}}<|im_end|>\n"]
assert template.format_prefix.slots == []
assert template.default_system == "You are a helpful assistant."
|