|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
from transformers.trainer_utils import get_last_checkpoint |
|
|
|
from ..extras.constants import ( |
|
CHECKPOINT_NAMES, |
|
PEFT_METHODS, |
|
RUNNING_LOG, |
|
STAGES_USE_PAIR_DATA, |
|
SWANLAB_CONFIG, |
|
TRAINER_LOG, |
|
TRAINING_STAGES, |
|
) |
|
from ..extras.packages import is_gradio_available, is_matplotlib_available |
|
from ..extras.ploting import gen_loss_plot |
|
from ..model import QuantizationMethod |
|
from .common import DEFAULT_CONFIG_DIR, DEFAULT_DATA_DIR, get_model_path, get_save_dir, get_template, load_dataset_info |
|
from .locales import ALERTS |
|
|
|
|
|
if is_gradio_available(): |
|
import gradio as gr |
|
|
|
|
|
def can_quantize(finetuning_type: str) -> "gr.Dropdown": |
|
r""" |
|
Judges if the quantization is available in this finetuning type. |
|
|
|
Inputs: top.finetuning_type |
|
Outputs: top.quantization_bit |
|
""" |
|
if finetuning_type not in PEFT_METHODS: |
|
return gr.Dropdown(value="none", interactive=False) |
|
else: |
|
return gr.Dropdown(interactive=True) |
|
|
|
|
|
def can_quantize_to(quantization_method: str) -> "gr.Dropdown": |
|
r""" |
|
Gets the available quantization bits. |
|
|
|
Inputs: top.quantization_method |
|
Outputs: top.quantization_bit |
|
""" |
|
if quantization_method == QuantizationMethod.BITS_AND_BYTES.value: |
|
available_bits = ["none", "8", "4"] |
|
elif quantization_method == QuantizationMethod.HQQ.value: |
|
available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"] |
|
elif quantization_method == QuantizationMethod.EETQ.value: |
|
available_bits = ["none", "8"] |
|
|
|
return gr.Dropdown(choices=available_bits) |
|
|
|
|
|
def change_stage(training_stage: str = list(TRAINING_STAGES.keys())[0]) -> Tuple[List[str], bool]: |
|
r""" |
|
Modifys states after changing the training stage. |
|
|
|
Inputs: train.training_stage |
|
Outputs: train.dataset, train.packing |
|
""" |
|
return [], TRAINING_STAGES[training_stage] == "pt" |
|
|
|
|
|
def get_model_info(model_name: str) -> Tuple[str, str]: |
|
r""" |
|
Gets the necessary information of this model. |
|
|
|
Inputs: top.model_name |
|
Outputs: top.model_path, top.template |
|
""" |
|
return get_model_path(model_name), get_template(model_name) |
|
|
|
|
|
def get_trainer_info(lang: str, output_path: os.PathLike, do_train: bool) -> Tuple[str, "gr.Slider", Dict[str, Any]]: |
|
r""" |
|
Gets training infomation for monitor. |
|
|
|
If do_train is True: |
|
Inputs: top.lang, train.output_path |
|
Outputs: train.output_box, train.progress_bar, train.loss_viewer, train.swanlab_link |
|
If do_train is False: |
|
Inputs: top.lang, eval.output_path |
|
Outputs: eval.output_box, eval.progress_bar, None, None |
|
""" |
|
running_log = "" |
|
running_progress = gr.Slider(visible=False) |
|
running_info = {} |
|
|
|
running_log_path = os.path.join(output_path, RUNNING_LOG) |
|
if os.path.isfile(running_log_path): |
|
with open(running_log_path, encoding="utf-8") as f: |
|
running_log = f.read()[-20000:] |
|
|
|
trainer_log_path = os.path.join(output_path, TRAINER_LOG) |
|
if os.path.isfile(trainer_log_path): |
|
trainer_log: List[Dict[str, Any]] = [] |
|
with open(trainer_log_path, encoding="utf-8") as f: |
|
for line in f: |
|
trainer_log.append(json.loads(line)) |
|
|
|
if len(trainer_log) != 0: |
|
latest_log = trainer_log[-1] |
|
percentage = latest_log["percentage"] |
|
label = "Running {:d}/{:d}: {} < {}".format( |
|
latest_log["current_steps"], |
|
latest_log["total_steps"], |
|
latest_log["elapsed_time"], |
|
latest_log["remaining_time"], |
|
) |
|
running_progress = gr.Slider(label=label, value=percentage, visible=True) |
|
|
|
if do_train and is_matplotlib_available(): |
|
running_info["loss_viewer"] = gr.Plot(gen_loss_plot(trainer_log)) |
|
|
|
swanlab_config_path = os.path.join(output_path, SWANLAB_CONFIG) |
|
if os.path.isfile(swanlab_config_path): |
|
with open(swanlab_config_path, encoding="utf-8") as f: |
|
swanlab_public_config = json.load(f) |
|
swanlab_link = swanlab_public_config["cloud"]["experiment_url"] |
|
if swanlab_link is not None: |
|
running_info["swanlab_link"] = gr.Markdown( |
|
ALERTS["info_swanlab_link"][lang] + swanlab_link, visible=True |
|
) |
|
|
|
return running_log, running_progress, running_info |
|
|
|
|
|
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown": |
|
r""" |
|
Lists all available checkpoints. |
|
|
|
Inputs: top.model_name, top.finetuning_type |
|
Outputs: top.checkpoint_path |
|
""" |
|
checkpoints = [] |
|
if model_name: |
|
save_dir = get_save_dir(model_name, finetuning_type) |
|
if save_dir and os.path.isdir(save_dir): |
|
for checkpoint in os.listdir(save_dir): |
|
if os.path.isdir(os.path.join(save_dir, checkpoint)) and any( |
|
os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES |
|
): |
|
checkpoints.append(checkpoint) |
|
|
|
if finetuning_type in PEFT_METHODS: |
|
return gr.Dropdown(value=[], choices=checkpoints, multiselect=True) |
|
else: |
|
return gr.Dropdown(value=None, choices=checkpoints, multiselect=False) |
|
|
|
|
|
def list_config_paths(current_time: str) -> "gr.Dropdown": |
|
r""" |
|
Lists all the saved configuration files. |
|
|
|
Inputs: train.current_time |
|
Outputs: train.config_path |
|
""" |
|
config_files = [f"{current_time}.yaml"] |
|
if os.path.isdir(DEFAULT_CONFIG_DIR): |
|
for file_name in os.listdir(DEFAULT_CONFIG_DIR): |
|
if file_name.endswith(".yaml") and file_name not in config_files: |
|
config_files.append(file_name) |
|
|
|
return gr.Dropdown(choices=config_files) |
|
|
|
|
|
def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown": |
|
r""" |
|
Lists all available datasets in the dataset dir for the training stage. |
|
|
|
Inputs: *.dataset_dir, *.training_stage |
|
Outputs: *.dataset |
|
""" |
|
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) |
|
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA |
|
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] |
|
return gr.Dropdown(choices=datasets) |
|
|
|
|
|
def list_output_dirs(model_name: Optional[str], finetuning_type: str, current_time: str) -> "gr.Dropdown": |
|
r""" |
|
Lists all the directories that can resume from. |
|
|
|
Inputs: top.model_name, top.finetuning_type, train.current_time |
|
Outputs: train.output_dir |
|
""" |
|
output_dirs = [f"train_{current_time}"] |
|
if model_name: |
|
save_dir = get_save_dir(model_name, finetuning_type) |
|
if save_dir and os.path.isdir(save_dir): |
|
for folder in os.listdir(save_dir): |
|
output_dir = os.path.join(save_dir, folder) |
|
if os.path.isdir(output_dir) and get_last_checkpoint(output_dir) is not None: |
|
output_dirs.append(folder) |
|
|
|
return gr.Dropdown(choices=output_dirs) |
|
|