File size: 7,725 Bytes
93adfea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from typing import Any, Dict, List, Optional, Tuple

from transformers.trainer_utils import get_last_checkpoint

from ..extras.constants import (
    CHECKPOINT_NAMES,
    PEFT_METHODS,
    RUNNING_LOG,
    STAGES_USE_PAIR_DATA,
    SWANLAB_CONFIG,
    TRAINER_LOG,
    TRAINING_STAGES,
)
from ..extras.packages import is_gradio_available, is_matplotlib_available
from ..extras.ploting import gen_loss_plot
from ..model import QuantizationMethod
from .common import DEFAULT_CONFIG_DIR, DEFAULT_DATA_DIR, get_model_path, get_save_dir, get_template, load_dataset_info
from .locales import ALERTS


if is_gradio_available():
    import gradio as gr


def can_quantize(finetuning_type: str) -> "gr.Dropdown":
    r"""
    Judges if the quantization is available in this finetuning type.

    Inputs: top.finetuning_type
    Outputs: top.quantization_bit
    """
    if finetuning_type not in PEFT_METHODS:
        return gr.Dropdown(value="none", interactive=False)
    else:
        return gr.Dropdown(interactive=True)


def can_quantize_to(quantization_method: str) -> "gr.Dropdown":
    r"""
    Gets the available quantization bits.

    Inputs: top.quantization_method
    Outputs: top.quantization_bit
    """
    if quantization_method == QuantizationMethod.BITS_AND_BYTES.value:
        available_bits = ["none", "8", "4"]
    elif quantization_method == QuantizationMethod.HQQ.value:
        available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"]
    elif quantization_method == QuantizationMethod.EETQ.value:
        available_bits = ["none", "8"]

    return gr.Dropdown(choices=available_bits)


def change_stage(training_stage: str = list(TRAINING_STAGES.keys())[0]) -> Tuple[List[str], bool]:
    r"""
    Modifys states after changing the training stage.

    Inputs: train.training_stage
    Outputs: train.dataset, train.packing
    """
    return [], TRAINING_STAGES[training_stage] == "pt"


def get_model_info(model_name: str) -> Tuple[str, str]:
    r"""
    Gets the necessary information of this model.

    Inputs: top.model_name
    Outputs: top.model_path, top.template
    """
    return get_model_path(model_name), get_template(model_name)


def get_trainer_info(lang: str, output_path: os.PathLike, do_train: bool) -> Tuple[str, "gr.Slider", Dict[str, Any]]:
    r"""
    Gets training infomation for monitor.

    If do_train is True:
        Inputs: top.lang, train.output_path
        Outputs: train.output_box, train.progress_bar, train.loss_viewer, train.swanlab_link
    If do_train is False:
        Inputs: top.lang, eval.output_path
        Outputs: eval.output_box, eval.progress_bar, None, None
    """
    running_log = ""
    running_progress = gr.Slider(visible=False)
    running_info = {}

    running_log_path = os.path.join(output_path, RUNNING_LOG)
    if os.path.isfile(running_log_path):
        with open(running_log_path, encoding="utf-8") as f:
            running_log = f.read()[-20000:]  # avoid lengthy log

    trainer_log_path = os.path.join(output_path, TRAINER_LOG)
    if os.path.isfile(trainer_log_path):
        trainer_log: List[Dict[str, Any]] = []
        with open(trainer_log_path, encoding="utf-8") as f:
            for line in f:
                trainer_log.append(json.loads(line))

        if len(trainer_log) != 0:
            latest_log = trainer_log[-1]
            percentage = latest_log["percentage"]
            label = "Running {:d}/{:d}: {} < {}".format(
                latest_log["current_steps"],
                latest_log["total_steps"],
                latest_log["elapsed_time"],
                latest_log["remaining_time"],
            )
            running_progress = gr.Slider(label=label, value=percentage, visible=True)

            if do_train and is_matplotlib_available():
                running_info["loss_viewer"] = gr.Plot(gen_loss_plot(trainer_log))

    swanlab_config_path = os.path.join(output_path, SWANLAB_CONFIG)
    if os.path.isfile(swanlab_config_path):
        with open(swanlab_config_path, encoding="utf-8") as f:
            swanlab_public_config = json.load(f)
            swanlab_link = swanlab_public_config["cloud"]["experiment_url"]
            if swanlab_link is not None:
                running_info["swanlab_link"] = gr.Markdown(
                    ALERTS["info_swanlab_link"][lang] + swanlab_link, visible=True
                )

    return running_log, running_progress, running_info


def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown":
    r"""
    Lists all available checkpoints.

    Inputs: top.model_name, top.finetuning_type
    Outputs: top.checkpoint_path
    """
    checkpoints = []
    if model_name:
        save_dir = get_save_dir(model_name, finetuning_type)
        if save_dir and os.path.isdir(save_dir):
            for checkpoint in os.listdir(save_dir):
                if os.path.isdir(os.path.join(save_dir, checkpoint)) and any(
                    os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES
                ):
                    checkpoints.append(checkpoint)

    if finetuning_type in PEFT_METHODS:
        return gr.Dropdown(value=[], choices=checkpoints, multiselect=True)
    else:
        return gr.Dropdown(value=None, choices=checkpoints, multiselect=False)


def list_config_paths(current_time: str) -> "gr.Dropdown":
    r"""
    Lists all the saved configuration files.

    Inputs: train.current_time
    Outputs: train.config_path
    """
    config_files = [f"{current_time}.yaml"]
    if os.path.isdir(DEFAULT_CONFIG_DIR):
        for file_name in os.listdir(DEFAULT_CONFIG_DIR):
            if file_name.endswith(".yaml") and file_name not in config_files:
                config_files.append(file_name)

    return gr.Dropdown(choices=config_files)


def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
    r"""
    Lists all available datasets in the dataset dir for the training stage.

    Inputs: *.dataset_dir, *.training_stage
    Outputs: *.dataset
    """
    dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
    ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
    datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
    return gr.Dropdown(choices=datasets)


def list_output_dirs(model_name: Optional[str], finetuning_type: str, current_time: str) -> "gr.Dropdown":
    r"""
    Lists all the directories that can resume from.

    Inputs: top.model_name, top.finetuning_type, train.current_time
    Outputs: train.output_dir
    """
    output_dirs = [f"train_{current_time}"]
    if model_name:
        save_dir = get_save_dir(model_name, finetuning_type)
        if save_dir and os.path.isdir(save_dir):
            for folder in os.listdir(save_dir):
                output_dir = os.path.join(save_dir, folder)
                if os.path.isdir(output_dir) and get_last_checkpoint(output_dir) is not None:
                    output_dirs.append(folder)

    return gr.Dropdown(choices=output_dirs)