Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Qwen/Qwen2.5-Coder-7B
trust_remote_code: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: nyxkrage/erebus-87k-fim-8k
    data_files: data/*
    type:
      field_instruction: prefix
      field_input: suffix
      field_output: middle
      format: "<|fim_suffix|>{input}<|fim_prefix|>{instruction}<|fim_middle|>"
dataset_prepared_path:
val_set_size: 0
output_dir: /workspace/data/output 

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 256
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: qwen2.5-coder-7b-erebus-fim
wandb_entity: kragelund
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

hub_model_id: NyxKrage/Qwen2.5-Coder-7B-Erebus-FIM
hub_strategy: all_checkpoints

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true

warmup_steps: 100
evals_per_epoch: 1
saves_per_epoch: 4
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay: 0.1
special_tokens:


Qwen2.5-Coder-7B-Erebus-FIM

This model is a fine-tuned version of Qwen/Qwen2.5-Coder-7B on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4

Training results

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for NyxKrage/Qwen2.5-Coder-7B-Erebus-FIM

Base model

Qwen/Qwen2.5-7B
Adapter
(2)
this model