|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.modules.module import _IncompatibleKeys |
|
|
|
from .ar_modules_attention import Attention |
|
from .ar_modules_embedding import ( |
|
RotaryPositionEmbeddingPytorchV1, |
|
RotaryPositionEmbeddingPytorchV2, |
|
SinCosPosEmbAxisTE, |
|
) |
|
from .ar_modules_mlp import MLP |
|
from .ar_modules_normalization import create_norm |
|
from .checkpoint import process_state_dict, substrings_to_ignore |
|
from .ar_utils_misc import maybe_convert_to_namespace |
|
from .log import log |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
""" |
|
A single transformer block consisting of an attention layer and a feed-forward layer. |
|
""" |
|
|
|
def __init__(self, layer_id: int, args=None): |
|
""" |
|
Initializes the TransformerBlock module. |
|
|
|
Args: |
|
layer_id: The ID of the transformer block. |
|
args: The model arguments containing hyperparameters. |
|
""" |
|
super().__init__() |
|
args = maybe_convert_to_namespace(args) |
|
attention_args = { |
|
"n_heads": args["n_heads"], |
|
"n_kv_heads": args["n_kv_heads"], |
|
"dim": args["dim"], |
|
"context_dim": None, |
|
"max_batch_size": args["max_batch_size"], |
|
"max_seq_len": args["max_seq_len"], |
|
"use_qk_normalization": args["use_qk_normalization"], |
|
"causal_mask": args["causal_mask"], |
|
"head_dim": args["head_dim"], |
|
"fuse_qkv": getattr(args, "fuse_qkv", False), |
|
"precision": getattr(args, "precision", "bfloat16"), |
|
"attn_type": getattr(args, "attn_type", "self"), |
|
} |
|
self.attention = Attention(**attention_args) |
|
|
|
self.has_cross_attention = False |
|
self.cross_attention, self.cross_attention_norm = None, None |
|
|
|
if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0: |
|
self.has_cross_attention = True |
|
cross_attention_args = attention_args.copy() |
|
cross_attention_args.update({"context_dim": args["context_dim"], "fuse_qkv": False, "attn_type": "cross"}) |
|
self.cross_attention = Attention(**cross_attention_args) |
|
self.cross_attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) |
|
|
|
self.feed_forward = MLP( |
|
dim=args["dim"], |
|
hidden_dim=args["ffn_hidden_size"], |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) |
|
self.ffn_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"]) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
rope: RotaryPositionEmbeddingPytorchV2, |
|
input_pos: Optional[torch.Tensor] = None, |
|
mask: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
context_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Performs the forward pass of the TransformerBlock module. |
|
|
|
Args: |
|
x: The input tensor. |
|
input_pos: The position of the current sequence. Used in inference (with KV cache) only. |
|
freqs_cis: The precomputed frequency values for rotary position embeddings. |
|
mask: The attention mask tensor. |
|
context (Optional[torch.Tensor]): The context tensor added via cross-attn. |
|
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. |
|
|
|
Returns: |
|
The output tensor after applying the transformer block. |
|
""" |
|
|
|
h = x + self.attention(self.attention_norm(x), rope=rope, input_pos=input_pos, mask=mask) |
|
|
|
|
|
if self.has_cross_attention: |
|
h = h + self.cross_attention( |
|
self.cross_attention_norm(h), rope=rope, input_pos=input_pos, mask=context_mask, context=context |
|
) |
|
|
|
|
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out |
|
|
|
def init_weights(self): |
|
""" |
|
Initializes the weights of the transformer block. |
|
""" |
|
for norm in (self.attention_norm, self.ffn_norm): |
|
norm.reset_parameters() |
|
self.attention.init_weights(self.weight_init_std) |
|
self.feed_forward.init_weights(self.weight_init_std) |
|
|
|
if self.has_cross_attention: |
|
self.cross_attention_norm.reset_parameters() |
|
self.cross_attention.init_weights(self.weight_init_std) |
|
|
|
|
|
|
|
|
|
class Transformer(nn.Module): |
|
""" |
|
The Transformer network consisting of transformer blocks. |
|
""" |
|
|
|
def __init__(self, params, tokenizer_config=None, init_weights: bool = True): |
|
""" |
|
Initializes the Transformer module. |
|
|
|
Args: |
|
params: The model parameters containing hyperparameters. |
|
tokenizer_config: The model tokenizer configuration. |
|
init_weights (bool): Whether to initialize the weights of the transformer following |
|
TorchTitan's Llama3 initialization scheme. |
|
""" |
|
super().__init__() |
|
|
|
self.params = maybe_convert_to_namespace(params) |
|
self.vocab_size = params["vocab_size"] |
|
self.n_layers = params["n_layers"] |
|
self.precision = getattr(torch, params["precision"]) |
|
self.tokenizer_config = tokenizer_config |
|
self.num_video_frames = params["num_video_frames"] |
|
|
|
|
|
self.tok_embeddings = self._create_token_embeddings() |
|
self.rope_config = self._create_rope_config() |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
[TransformerBlock(layer_id, self.params).to(self.precision) for layer_id in range(self.n_layers)] |
|
) |
|
|
|
|
|
self.norm = create_norm(self.params["norm_type"], dim=self.params["dim"], eps=self.params["norm_eps"]).to( |
|
self.precision |
|
) |
|
if self.params["pytorch_rope_version"] == "v1": |
|
self.rope = RotaryPositionEmbeddingPytorchV1(**self.rope_config) |
|
elif self.params["pytorch_rope_version"] == "v2": |
|
|
|
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None |
|
self.rope = RotaryPositionEmbeddingPytorchV2( |
|
seq_len=self.params["max_seq_len"], training_type=training_type, **self.rope_config |
|
) |
|
else: |
|
raise ValueError(f"Invalid PyTorch RoPE version: {self.params['pytorch_rope_version']}") |
|
|
|
self.causal_mask = torch.tril( |
|
torch.ones(self.params["max_seq_len"], self.params["max_seq_len"], dtype=torch.bool) |
|
).cuda() |
|
|
|
|
|
self.output = self._create_output_projection() |
|
|
|
|
|
self.has_cross_attention = getattr(params, "insert_cross_attn", False) |
|
|
|
|
|
if self.params["apply_abs_pos_emb"]: |
|
self.pos_emb_config = self._create_abs_pos_emb_config() |
|
self.pos_emb, self.abs_pos_emb = self._initialize_abs_pos_emb() |
|
|
|
def _create_rope_config(self) -> Dict: |
|
shape_map = { |
|
"3D": self.params["video_latent_shape"], |
|
"1D": None, |
|
} |
|
latent_shape = shape_map.get(self.params["rope_dim"], None) |
|
head_dim = self.params["head_dim"] |
|
if head_dim is None: |
|
head_dim = self.params["dim"] // self.params["n_heads"] |
|
return { |
|
"dim": head_dim, |
|
"max_position_embeddings": self.params["max_seq_len"], |
|
"original_max_position_embeddings": self.params["original_seq_len"], |
|
"rope_theta": self.params["rope_theta"], |
|
"apply_yarn": self.params["apply_yarn"], |
|
"scale": self.params["yarn_scale"], |
|
"beta_fast": self.params["yarn_beta_fast"], |
|
"beta_slow": self.params["yarn_beta_slow"], |
|
"rope_dim": self.params["rope_dim"], |
|
"latent_shape": latent_shape, |
|
"original_latent_shape": self.params["original_latent_shape"], |
|
"pad_to_multiple_of": self.params["pad_to_multiple_of"], |
|
} |
|
|
|
def _create_abs_pos_emb_config(self): |
|
shape_map = { |
|
"3D": self.params["video_latent_shape"], |
|
"1D": None, |
|
} |
|
latent_shape = shape_map.get(self.params["rope_dim"], None) |
|
return { |
|
"dim": self.params["dim"], |
|
"latent_shape": latent_shape, |
|
"pad_to_multiple_of": self.params["pad_to_multiple_of"], |
|
} |
|
|
|
def _create_token_embeddings(self, vocab_size: int = None): |
|
""" |
|
Create token embeddings. |
|
|
|
Returns: |
|
nn.Module: Token embeddings module. |
|
""" |
|
if vocab_size is None: |
|
vocab_size = self.params["vocab_size"] |
|
return nn.Embedding(vocab_size, self.params["dim"]).to(self.precision) |
|
|
|
def _create_output_projection(self, vocab_size: int = None): |
|
""" |
|
Create the output projection layer. |
|
|
|
Args: |
|
vocab_size (int): Vocabulary size (to override the default vocab size). |
|
Returns: |
|
LinearTE: Output projection layer. |
|
""" |
|
if vocab_size is None: |
|
vocab_size = self.params["vocab_size"] |
|
return nn.Linear(self.params["dim"], vocab_size, bias=False).to(self.precision) |
|
|
|
def _initialize_abs_pos_emb(self): |
|
pos_emb = SinCosPosEmbAxisTE(**self.pos_emb_config) |
|
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None |
|
abs_pos_emb = pos_emb.forward(training_type=training_type) |
|
return pos_emb, abs_pos_emb |
|
|
|
def forward( |
|
self, |
|
tokens: Optional[torch.Tensor] = None, |
|
input_pos: Optional[torch.Tensor] = None, |
|
token_embeddings: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
context_mask: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Performs the forward pass of the Transformer module. |
|
|
|
Args: |
|
tokens (torch.Tensor, optional): The input tensor of token IDs. |
|
input_pos (Optional[torch.Tensor]): The position of the current sequence. Used in inference with KV cache. |
|
token_embeddings (torch.Tensor, optional): Precomputed token embeddings. If provided, tokens should be None. |
|
context (Optional[torch.Tensor]): The context tensor added via cross-attn. |
|
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. |
|
Returns: |
|
The output tensor after applying the transformer layers. |
|
""" |
|
|
|
assert ( |
|
tokens is None or token_embeddings is None |
|
), "Either tokens or token_embeddings should be provided, not both." |
|
|
|
if token_embeddings is None: |
|
seq_len = tokens.shape[1] |
|
h = self.tok_embeddings(tokens) |
|
else: |
|
seq_len = token_embeddings.shape[1] |
|
h = token_embeddings |
|
|
|
|
|
mask = self._create_attention_mask(input_pos=input_pos) |
|
|
|
|
|
layer_kwargs = self._prepare_layer_kwargs( |
|
input_pos=input_pos, |
|
mask=mask, |
|
context=context, |
|
context_mask=context_mask, |
|
) |
|
|
|
|
|
for layer in self.layers: |
|
if self.params["apply_abs_pos_emb"]: |
|
h = self.apply_abs_pos_emb(h, input_pos=input_pos) |
|
h = layer(h, **layer_kwargs) |
|
|
|
|
|
h = self.norm(h) |
|
|
|
|
|
output = self.output(h) |
|
return output |
|
|
|
def _create_attention_mask(self, input_pos: Optional[torch.Tensor]) -> Optional[torch.Tensor]: |
|
""" |
|
Creates an attention mask for the transformer layers. |
|
|
|
Args: |
|
input_pos[torch.Tensor]: The position of input sequence (used for inference only). |
|
|
|
Returns: |
|
Optional[torch.Tensor]: The attention mask, or None for causal mask. |
|
""" |
|
|
|
assert input_pos is not None, "input_pos must be provided for inference" |
|
mask = self.causal_mask[input_pos] |
|
return mask |
|
|
|
def _prepare_layer_kwargs( |
|
self, |
|
input_pos: Optional[torch.Tensor], |
|
mask: Optional[torch.Tensor], |
|
context: Optional[torch.Tensor], |
|
context_mask: Optional[torch.Tensor], |
|
) -> Dict[str, Any]: |
|
""" |
|
Prepares the keyword arguments for transformer layers. |
|
|
|
Args: |
|
input_pos (Optional[torch.Tensor]): The position of the current sequence. |
|
mask (Optional[torch.Tensor]): The attention mask. |
|
context (Optional[torch.Tensor]): The context tensor added via cross-attn. |
|
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor. |
|
|
|
Returns: |
|
Dict[str, Any]: A dictionary of keyword arguments for the transformer layers. |
|
""" |
|
if context is not None: |
|
context = context.to(self.precision) |
|
|
|
if isinstance(mask, torch.Tensor) and mask.ndim == 2: |
|
mask = mask[None, None, :, :] |
|
if isinstance(context_mask, torch.Tensor) and context_mask.ndim == 2: |
|
context_mask = context_mask[None, None, :, :] |
|
|
|
layer_kwargs = { |
|
"mask": mask, |
|
"context": context, |
|
"context_mask": context_mask, |
|
} |
|
|
|
layer_kwargs["input_pos"] = input_pos |
|
layer_kwargs["rope"] = self.rope |
|
|
|
return layer_kwargs |
|
|
|
def apply_abs_pos_emb(self, x: torch.Tensor, input_pos: int = None) -> torch.Tensor: |
|
""" |
|
Applies the absolute position embeddings to the input tensor. |
|
""" |
|
abs_pos_emb = self.abs_pos_emb |
|
abs_pos_emb = abs_pos_emb[:, input_pos, :] if input_pos is not None else abs_pos_emb |
|
return x + abs_pos_emb |
|
|
|
@torch.no_grad() |
|
def expand_vocab( |
|
self, new_vocab_size: int, init_method: str = "gaussian", multiple_of=64, expand_output_layer=True |
|
): |
|
""" |
|
Expands the vocabulary of the model to the new size. |
|
|
|
Args: |
|
new_vocab_size (int): The new vocabulary size. |
|
init_method (str): The initialization method for new embeddings. |
|
Can be "zero" or "gaussian". Default is "gaussian". |
|
multiple_of (int): The new vocabulary size must be a multiple of this value. Defaults to 64 to fully |
|
leverage the power of NVIDIA TensorCore (source 1: https://x.com/karpathy/status/1621578354024677377, |
|
source 2: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc) |
|
expand_output_layer (bool): Whether to also expand the output layer. Defaults to True. |
|
|
|
Returns: |
|
None |
|
""" |
|
if new_vocab_size <= self.vocab_size: |
|
raise ValueError( |
|
f"New vocabulary size ({new_vocab_size}) must be " f"larger than current size ({self.vocab_size})" |
|
) |
|
if new_vocab_size % multiple_of != 0: |
|
log.debug(f"New vocabulary size must be a multiple of {multiple_of}. Obtained {new_vocab_size}.") |
|
new_vocab_size = (new_vocab_size // multiple_of + 1) * multiple_of |
|
log.debug(f"Rounded vocabulary size to {new_vocab_size}.") |
|
|
|
old_embeddings = self.tok_embeddings |
|
tensor_kwargs = {"device": old_embeddings.weight.device, "dtype": old_embeddings.weight.dtype} |
|
self.tok_embeddings = self._create_token_embeddings(vocab_size=new_vocab_size).to(**tensor_kwargs) |
|
|
|
if init_method not in ["zero", "gaussian"]: |
|
raise ValueError(f"Unknown initialization method: {init_method}") |
|
|
|
|
|
if init_method == "zero": |
|
self.tok_embeddings.weight.data[self.vocab_size :].zero_() |
|
|
|
|
|
log.debug( |
|
f"old_embeddings: {old_embeddings.weight.data.shape}, new_embeddings: {self.tok_embeddings.weight.data.shape}, vocab_size: {self.vocab_size}" |
|
) |
|
self.tok_embeddings.weight.data[: self.vocab_size] = old_embeddings.weight.data |
|
|
|
old_output = self.output |
|
self.output = self._create_output_projection(vocab_size=new_vocab_size if expand_output_layer else None) |
|
|
|
|
|
self.output.weight.data[self.vocab_size :].zero_() |
|
|
|
self.output.weight.data[: self.vocab_size] = old_output.weight.data |
|
|
|
|
|
self.vocab_size = new_vocab_size |
|
log.debug(f"Expanded vocabulary size to {new_vocab_size}") |
|
|
|
def state_dict(self, *args, **kwargs): |
|
""" |
|
Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8). |
|
""" |
|
state_dict = super().state_dict(*args, **kwargs) |
|
return process_state_dict(state_dict) |
|
|
|
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False): |
|
""" |
|
Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by |
|
TransformerEngine for FP8). |
|
""" |
|
state_dict = process_state_dict(state_dict) |
|
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign) |
|
if strict: |
|
actual_missing_keys = [] |
|
for key in missing_keys: |
|
if not any(substring in key for substring in substrings_to_ignore): |
|
actual_missing_keys.append(key) |
|
if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0: |
|
raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}") |
|
missing_keys = actual_missing_keys |
|
return _IncompatibleKeys(missing_keys, unexpected_keys) |
|
|