DiffusionText2WorldGeneration / ar_transformer.py
EthanZyh's picture
copied from EthanZyh/DiffusionText2WorldGeneration
8c31d70
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
from torch.nn.modules.module import _IncompatibleKeys
from .ar_modules_attention import Attention
from .ar_modules_embedding import (
RotaryPositionEmbeddingPytorchV1,
RotaryPositionEmbeddingPytorchV2,
SinCosPosEmbAxisTE,
)
from .ar_modules_mlp import MLP
from .ar_modules_normalization import create_norm
from .checkpoint import process_state_dict, substrings_to_ignore
from .ar_utils_misc import maybe_convert_to_namespace
from .log import log
class TransformerBlock(nn.Module):
"""
A single transformer block consisting of an attention layer and a feed-forward layer.
"""
def __init__(self, layer_id: int, args=None):
"""
Initializes the TransformerBlock module.
Args:
layer_id: The ID of the transformer block.
args: The model arguments containing hyperparameters.
"""
super().__init__()
args = maybe_convert_to_namespace(args)
attention_args = {
"n_heads": args["n_heads"],
"n_kv_heads": args["n_kv_heads"],
"dim": args["dim"],
"context_dim": None,
"max_batch_size": args["max_batch_size"],
"max_seq_len": args["max_seq_len"],
"use_qk_normalization": args["use_qk_normalization"],
"causal_mask": args["causal_mask"],
"head_dim": args["head_dim"],
"fuse_qkv": getattr(args, "fuse_qkv", False),
"precision": getattr(args, "precision", "bfloat16"),
"attn_type": getattr(args, "attn_type", "self"),
}
self.attention = Attention(**attention_args)
self.has_cross_attention = False
self.cross_attention, self.cross_attention_norm = None, None
if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0:
self.has_cross_attention = True
cross_attention_args = attention_args.copy()
cross_attention_args.update({"context_dim": args["context_dim"], "fuse_qkv": False, "attn_type": "cross"})
self.cross_attention = Attention(**cross_attention_args)
self.cross_attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.feed_forward = MLP(
dim=args["dim"],
hidden_dim=args["ffn_hidden_size"],
)
self.layer_id = layer_id
self.attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.ffn_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
def forward(
self,
x: torch.Tensor,
rope: RotaryPositionEmbeddingPytorchV2,
input_pos: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the TransformerBlock module.
Args:
x: The input tensor.
input_pos: The position of the current sequence. Used in inference (with KV cache) only.
freqs_cis: The precomputed frequency values for rotary position embeddings.
mask: The attention mask tensor.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
The output tensor after applying the transformer block.
"""
# Apply attention and residual connection
h = x + self.attention(self.attention_norm(x), rope=rope, input_pos=input_pos, mask=mask)
# If insert cross-attention, apply CA and residual connection
if self.has_cross_attention:
h = h + self.cross_attention(
self.cross_attention_norm(h), rope=rope, input_pos=input_pos, mask=context_mask, context=context
)
# Apply feed-forward network and residual connection
out = h + self.feed_forward(self.ffn_norm(h))
return out
def init_weights(self):
"""
Initializes the weights of the transformer block.
"""
for norm in (self.attention_norm, self.ffn_norm):
norm.reset_parameters()
self.attention.init_weights(self.weight_init_std)
self.feed_forward.init_weights(self.weight_init_std)
if self.has_cross_attention:
self.cross_attention_norm.reset_parameters()
self.cross_attention.init_weights(self.weight_init_std)
# zero-init the final output layer of cross-attention
# nn.init.zeros_(self.cross_attention.wo.weight)
class Transformer(nn.Module):
"""
The Transformer network consisting of transformer blocks.
"""
def __init__(self, params, tokenizer_config=None, init_weights: bool = True):
"""
Initializes the Transformer module.
Args:
params: The model parameters containing hyperparameters.
tokenizer_config: The model tokenizer configuration.
init_weights (bool): Whether to initialize the weights of the transformer following
TorchTitan's Llama3 initialization scheme.
"""
super().__init__()
# Check if self.params is an OmegaConf DictConfig instance
self.params = maybe_convert_to_namespace(params)
self.vocab_size = params["vocab_size"]
self.n_layers = params["n_layers"]
self.precision = getattr(torch, params["precision"])
self.tokenizer_config = tokenizer_config
self.num_video_frames = params["num_video_frames"]
# Token embeddings
self.tok_embeddings = self._create_token_embeddings()
self.rope_config = self._create_rope_config()
# Transformer layers
self.layers = nn.ModuleList(
[TransformerBlock(layer_id, self.params).to(self.precision) for layer_id in range(self.n_layers)]
)
# Final layer normalization
self.norm = create_norm(self.params["norm_type"], dim=self.params["dim"], eps=self.params["norm_eps"]).to(
self.precision
)
if self.params["pytorch_rope_version"] == "v1":
self.rope = RotaryPositionEmbeddingPytorchV1(**self.rope_config)
elif self.params["pytorch_rope_version"] == "v2":
# Rotary position embeddings
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
self.rope = RotaryPositionEmbeddingPytorchV2(
seq_len=self.params["max_seq_len"], training_type=training_type, **self.rope_config
)
else:
raise ValueError(f"Invalid PyTorch RoPE version: {self.params['pytorch_rope_version']}")
# Causal mask
self.causal_mask = torch.tril(
torch.ones(self.params["max_seq_len"], self.params["max_seq_len"], dtype=torch.bool)
).cuda()
# Output projection
self.output = self._create_output_projection()
# Freeze network parameters for finetuning w/ cross-attention
self.has_cross_attention = getattr(params, "insert_cross_attn", False)
# Absolute position embeddings
if self.params["apply_abs_pos_emb"]:
self.pos_emb_config = self._create_abs_pos_emb_config()
self.pos_emb, self.abs_pos_emb = self._initialize_abs_pos_emb()
def _create_rope_config(self) -> Dict:
shape_map = {
"3D": self.params["video_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
head_dim = self.params["head_dim"]
if head_dim is None:
head_dim = self.params["dim"] // self.params["n_heads"]
return {
"dim": head_dim,
"max_position_embeddings": self.params["max_seq_len"],
"original_max_position_embeddings": self.params["original_seq_len"],
"rope_theta": self.params["rope_theta"],
"apply_yarn": self.params["apply_yarn"],
"scale": self.params["yarn_scale"],
"beta_fast": self.params["yarn_beta_fast"],
"beta_slow": self.params["yarn_beta_slow"],
"rope_dim": self.params["rope_dim"],
"latent_shape": latent_shape,
"original_latent_shape": self.params["original_latent_shape"],
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_abs_pos_emb_config(self):
shape_map = {
"3D": self.params["video_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
return {
"dim": self.params["dim"],
"latent_shape": latent_shape,
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_token_embeddings(self, vocab_size: int = None):
"""
Create token embeddings.
Returns:
nn.Module: Token embeddings module.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
return nn.Embedding(vocab_size, self.params["dim"]).to(self.precision)
def _create_output_projection(self, vocab_size: int = None):
"""
Create the output projection layer.
Args:
vocab_size (int): Vocabulary size (to override the default vocab size).
Returns:
LinearTE: Output projection layer.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
return nn.Linear(self.params["dim"], vocab_size, bias=False).to(self.precision)
def _initialize_abs_pos_emb(self):
pos_emb = SinCosPosEmbAxisTE(**self.pos_emb_config)
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
abs_pos_emb = pos_emb.forward(training_type=training_type)
return pos_emb, abs_pos_emb
def forward(
self,
tokens: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
token_embeddings: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the Transformer module.
Args:
tokens (torch.Tensor, optional): The input tensor of token IDs.
input_pos (Optional[torch.Tensor]): The position of the current sequence. Used in inference with KV cache.
token_embeddings (torch.Tensor, optional): Precomputed token embeddings. If provided, tokens should be None.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
The output tensor after applying the transformer layers.
"""
# Token embeddings
assert (
tokens is None or token_embeddings is None
), "Either tokens or token_embeddings should be provided, not both."
if token_embeddings is None:
seq_len = tokens.shape[1]
h = self.tok_embeddings(tokens)
else:
seq_len = token_embeddings.shape[1]
h = token_embeddings
# Create attention mask
mask = self._create_attention_mask(input_pos=input_pos)
# Prepare layer arguments
layer_kwargs = self._prepare_layer_kwargs(
input_pos=input_pos,
mask=mask,
context=context,
context_mask=context_mask,
)
# Apply transformer layers
for layer in self.layers:
if self.params["apply_abs_pos_emb"]:
h = self.apply_abs_pos_emb(h, input_pos=input_pos)
h = layer(h, **layer_kwargs)
# Apply final layer normalization
h = self.norm(h)
# Output linear projection
output = self.output(h)
return output
def _create_attention_mask(self, input_pos: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
"""
Creates an attention mask for the transformer layers.
Args:
input_pos[torch.Tensor]: The position of input sequence (used for inference only).
Returns:
Optional[torch.Tensor]: The attention mask, or None for causal mask.
"""
assert input_pos is not None, "input_pos must be provided for inference"
mask = self.causal_mask[input_pos]
return mask
def _prepare_layer_kwargs(
self,
input_pos: Optional[torch.Tensor],
mask: Optional[torch.Tensor],
context: Optional[torch.Tensor],
context_mask: Optional[torch.Tensor],
) -> Dict[str, Any]:
"""
Prepares the keyword arguments for transformer layers.
Args:
input_pos (Optional[torch.Tensor]): The position of the current sequence.
mask (Optional[torch.Tensor]): The attention mask.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
Dict[str, Any]: A dictionary of keyword arguments for the transformer layers.
"""
if context is not None:
context = context.to(self.precision)
if isinstance(mask, torch.Tensor) and mask.ndim == 2:
mask = mask[None, None, :, :]
if isinstance(context_mask, torch.Tensor) and context_mask.ndim == 2:
context_mask = context_mask[None, None, :, :]
layer_kwargs = {
"mask": mask,
"context": context,
"context_mask": context_mask,
}
layer_kwargs["input_pos"] = input_pos
layer_kwargs["rope"] = self.rope
return layer_kwargs
def apply_abs_pos_emb(self, x: torch.Tensor, input_pos: int = None) -> torch.Tensor:
"""
Applies the absolute position embeddings to the input tensor.
"""
abs_pos_emb = self.abs_pos_emb
abs_pos_emb = abs_pos_emb[:, input_pos, :] if input_pos is not None else abs_pos_emb
return x + abs_pos_emb
@torch.no_grad()
def expand_vocab(
self, new_vocab_size: int, init_method: str = "gaussian", multiple_of=64, expand_output_layer=True
):
"""
Expands the vocabulary of the model to the new size.
Args:
new_vocab_size (int): The new vocabulary size.
init_method (str): The initialization method for new embeddings.
Can be "zero" or "gaussian". Default is "gaussian".
multiple_of (int): The new vocabulary size must be a multiple of this value. Defaults to 64 to fully
leverage the power of NVIDIA TensorCore (source 1: https://x.com/karpathy/status/1621578354024677377,
source 2: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc)
expand_output_layer (bool): Whether to also expand the output layer. Defaults to True.
Returns:
None
"""
if new_vocab_size <= self.vocab_size:
raise ValueError(
f"New vocabulary size ({new_vocab_size}) must be " f"larger than current size ({self.vocab_size})"
)
if new_vocab_size % multiple_of != 0:
log.debug(f"New vocabulary size must be a multiple of {multiple_of}. Obtained {new_vocab_size}.")
new_vocab_size = (new_vocab_size // multiple_of + 1) * multiple_of
log.debug(f"Rounded vocabulary size to {new_vocab_size}.")
# Resize token embeddings
old_embeddings = self.tok_embeddings
tensor_kwargs = {"device": old_embeddings.weight.device, "dtype": old_embeddings.weight.dtype}
self.tok_embeddings = self._create_token_embeddings(vocab_size=new_vocab_size).to(**tensor_kwargs)
# Initialize new embeddings
if init_method not in ["zero", "gaussian"]:
raise ValueError(f"Unknown initialization method: {init_method}")
# The default initialization of nn.Embedding is Gaussian, so we don't need to do anything
# if init_method == "gaussian". Only if init_method == "zero", we need to zero out the new embeddings.
if init_method == "zero":
self.tok_embeddings.weight.data[self.vocab_size :].zero_()
# Copy old embeddings
log.debug(
f"old_embeddings: {old_embeddings.weight.data.shape}, new_embeddings: {self.tok_embeddings.weight.data.shape}, vocab_size: {self.vocab_size}"
)
self.tok_embeddings.weight.data[: self.vocab_size] = old_embeddings.weight.data
# Resize output layer
old_output = self.output
self.output = self._create_output_projection(vocab_size=new_vocab_size if expand_output_layer else None)
# Initialize new output weights
self.output.weight.data[self.vocab_size :].zero_()
# Copy old output weights
self.output.weight.data[: self.vocab_size] = old_output.weight.data
# Update vocab size
self.vocab_size = new_vocab_size
log.debug(f"Expanded vocabulary size to {new_vocab_size}")
def state_dict(self, *args, **kwargs):
"""
Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8).
"""
state_dict = super().state_dict(*args, **kwargs)
return process_state_dict(state_dict)
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False):
"""
Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by
TransformerEngine for FP8).
"""
state_dict = process_state_dict(state_dict)
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign)
if strict:
actual_missing_keys = []
for key in missing_keys:
if not any(substring in key for substring in substrings_to_ignore):
actual_missing_keys.append(key)
if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0:
raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}")
missing_keys = actual_missing_keys
return _IncompatibleKeys(missing_keys, unexpected_keys)