File size: 19,451 Bytes
8c31d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn as nn
from torch.nn.modules.module import _IncompatibleKeys
from .ar_modules_attention import Attention
from .ar_modules_embedding import (
RotaryPositionEmbeddingPytorchV1,
RotaryPositionEmbeddingPytorchV2,
SinCosPosEmbAxisTE,
)
from .ar_modules_mlp import MLP
from .ar_modules_normalization import create_norm
from .checkpoint import process_state_dict, substrings_to_ignore
from .ar_utils_misc import maybe_convert_to_namespace
from .log import log
class TransformerBlock(nn.Module):
"""
A single transformer block consisting of an attention layer and a feed-forward layer.
"""
def __init__(self, layer_id: int, args=None):
"""
Initializes the TransformerBlock module.
Args:
layer_id: The ID of the transformer block.
args: The model arguments containing hyperparameters.
"""
super().__init__()
args = maybe_convert_to_namespace(args)
attention_args = {
"n_heads": args["n_heads"],
"n_kv_heads": args["n_kv_heads"],
"dim": args["dim"],
"context_dim": None,
"max_batch_size": args["max_batch_size"],
"max_seq_len": args["max_seq_len"],
"use_qk_normalization": args["use_qk_normalization"],
"causal_mask": args["causal_mask"],
"head_dim": args["head_dim"],
"fuse_qkv": getattr(args, "fuse_qkv", False),
"precision": getattr(args, "precision", "bfloat16"),
"attn_type": getattr(args, "attn_type", "self"),
}
self.attention = Attention(**attention_args)
self.has_cross_attention = False
self.cross_attention, self.cross_attention_norm = None, None
if args["insert_cross_attn"] and layer_id % args["insert_cross_attn_every_k_layers"] == 0:
self.has_cross_attention = True
cross_attention_args = attention_args.copy()
cross_attention_args.update({"context_dim": args["context_dim"], "fuse_qkv": False, "attn_type": "cross"})
self.cross_attention = Attention(**cross_attention_args)
self.cross_attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.feed_forward = MLP(
dim=args["dim"],
hidden_dim=args["ffn_hidden_size"],
)
self.layer_id = layer_id
self.attention_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
self.ffn_norm = create_norm(args["norm_type"], dim=args["dim"], eps=args["norm_eps"])
def forward(
self,
x: torch.Tensor,
rope: RotaryPositionEmbeddingPytorchV2,
input_pos: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the TransformerBlock module.
Args:
x: The input tensor.
input_pos: The position of the current sequence. Used in inference (with KV cache) only.
freqs_cis: The precomputed frequency values for rotary position embeddings.
mask: The attention mask tensor.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
The output tensor after applying the transformer block.
"""
# Apply attention and residual connection
h = x + self.attention(self.attention_norm(x), rope=rope, input_pos=input_pos, mask=mask)
# If insert cross-attention, apply CA and residual connection
if self.has_cross_attention:
h = h + self.cross_attention(
self.cross_attention_norm(h), rope=rope, input_pos=input_pos, mask=context_mask, context=context
)
# Apply feed-forward network and residual connection
out = h + self.feed_forward(self.ffn_norm(h))
return out
def init_weights(self):
"""
Initializes the weights of the transformer block.
"""
for norm in (self.attention_norm, self.ffn_norm):
norm.reset_parameters()
self.attention.init_weights(self.weight_init_std)
self.feed_forward.init_weights(self.weight_init_std)
if self.has_cross_attention:
self.cross_attention_norm.reset_parameters()
self.cross_attention.init_weights(self.weight_init_std)
# zero-init the final output layer of cross-attention
# nn.init.zeros_(self.cross_attention.wo.weight)
class Transformer(nn.Module):
"""
The Transformer network consisting of transformer blocks.
"""
def __init__(self, params, tokenizer_config=None, init_weights: bool = True):
"""
Initializes the Transformer module.
Args:
params: The model parameters containing hyperparameters.
tokenizer_config: The model tokenizer configuration.
init_weights (bool): Whether to initialize the weights of the transformer following
TorchTitan's Llama3 initialization scheme.
"""
super().__init__()
# Check if self.params is an OmegaConf DictConfig instance
self.params = maybe_convert_to_namespace(params)
self.vocab_size = params["vocab_size"]
self.n_layers = params["n_layers"]
self.precision = getattr(torch, params["precision"])
self.tokenizer_config = tokenizer_config
self.num_video_frames = params["num_video_frames"]
# Token embeddings
self.tok_embeddings = self._create_token_embeddings()
self.rope_config = self._create_rope_config()
# Transformer layers
self.layers = nn.ModuleList(
[TransformerBlock(layer_id, self.params).to(self.precision) for layer_id in range(self.n_layers)]
)
# Final layer normalization
self.norm = create_norm(self.params["norm_type"], dim=self.params["dim"], eps=self.params["norm_eps"]).to(
self.precision
)
if self.params["pytorch_rope_version"] == "v1":
self.rope = RotaryPositionEmbeddingPytorchV1(**self.rope_config)
elif self.params["pytorch_rope_version"] == "v2":
# Rotary position embeddings
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
self.rope = RotaryPositionEmbeddingPytorchV2(
seq_len=self.params["max_seq_len"], training_type=training_type, **self.rope_config
)
else:
raise ValueError(f"Invalid PyTorch RoPE version: {self.params['pytorch_rope_version']}")
# Causal mask
self.causal_mask = torch.tril(
torch.ones(self.params["max_seq_len"], self.params["max_seq_len"], dtype=torch.bool)
).cuda()
# Output projection
self.output = self._create_output_projection()
# Freeze network parameters for finetuning w/ cross-attention
self.has_cross_attention = getattr(params, "insert_cross_attn", False)
# Absolute position embeddings
if self.params["apply_abs_pos_emb"]:
self.pos_emb_config = self._create_abs_pos_emb_config()
self.pos_emb, self.abs_pos_emb = self._initialize_abs_pos_emb()
def _create_rope_config(self) -> Dict:
shape_map = {
"3D": self.params["video_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
head_dim = self.params["head_dim"]
if head_dim is None:
head_dim = self.params["dim"] // self.params["n_heads"]
return {
"dim": head_dim,
"max_position_embeddings": self.params["max_seq_len"],
"original_max_position_embeddings": self.params["original_seq_len"],
"rope_theta": self.params["rope_theta"],
"apply_yarn": self.params["apply_yarn"],
"scale": self.params["yarn_scale"],
"beta_fast": self.params["yarn_beta_fast"],
"beta_slow": self.params["yarn_beta_slow"],
"rope_dim": self.params["rope_dim"],
"latent_shape": latent_shape,
"original_latent_shape": self.params["original_latent_shape"],
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_abs_pos_emb_config(self):
shape_map = {
"3D": self.params["video_latent_shape"],
"1D": None,
}
latent_shape = shape_map.get(self.params["rope_dim"], None)
return {
"dim": self.params["dim"],
"latent_shape": latent_shape,
"pad_to_multiple_of": self.params["pad_to_multiple_of"],
}
def _create_token_embeddings(self, vocab_size: int = None):
"""
Create token embeddings.
Returns:
nn.Module: Token embeddings module.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
return nn.Embedding(vocab_size, self.params["dim"]).to(self.precision)
def _create_output_projection(self, vocab_size: int = None):
"""
Create the output projection layer.
Args:
vocab_size (int): Vocabulary size (to override the default vocab size).
Returns:
LinearTE: Output projection layer.
"""
if vocab_size is None:
vocab_size = self.params["vocab_size"]
return nn.Linear(self.params["dim"], vocab_size, bias=False).to(self.precision)
def _initialize_abs_pos_emb(self):
pos_emb = SinCosPosEmbAxisTE(**self.pos_emb_config)
training_type = self.tokenizer_config.training_type if self.tokenizer_config is not None else None
abs_pos_emb = pos_emb.forward(training_type=training_type)
return pos_emb, abs_pos_emb
def forward(
self,
tokens: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
token_embeddings: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
context_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Performs the forward pass of the Transformer module.
Args:
tokens (torch.Tensor, optional): The input tensor of token IDs.
input_pos (Optional[torch.Tensor]): The position of the current sequence. Used in inference with KV cache.
token_embeddings (torch.Tensor, optional): Precomputed token embeddings. If provided, tokens should be None.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
The output tensor after applying the transformer layers.
"""
# Token embeddings
assert (
tokens is None or token_embeddings is None
), "Either tokens or token_embeddings should be provided, not both."
if token_embeddings is None:
seq_len = tokens.shape[1]
h = self.tok_embeddings(tokens)
else:
seq_len = token_embeddings.shape[1]
h = token_embeddings
# Create attention mask
mask = self._create_attention_mask(input_pos=input_pos)
# Prepare layer arguments
layer_kwargs = self._prepare_layer_kwargs(
input_pos=input_pos,
mask=mask,
context=context,
context_mask=context_mask,
)
# Apply transformer layers
for layer in self.layers:
if self.params["apply_abs_pos_emb"]:
h = self.apply_abs_pos_emb(h, input_pos=input_pos)
h = layer(h, **layer_kwargs)
# Apply final layer normalization
h = self.norm(h)
# Output linear projection
output = self.output(h)
return output
def _create_attention_mask(self, input_pos: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
"""
Creates an attention mask for the transformer layers.
Args:
input_pos[torch.Tensor]: The position of input sequence (used for inference only).
Returns:
Optional[torch.Tensor]: The attention mask, or None for causal mask.
"""
assert input_pos is not None, "input_pos must be provided for inference"
mask = self.causal_mask[input_pos]
return mask
def _prepare_layer_kwargs(
self,
input_pos: Optional[torch.Tensor],
mask: Optional[torch.Tensor],
context: Optional[torch.Tensor],
context_mask: Optional[torch.Tensor],
) -> Dict[str, Any]:
"""
Prepares the keyword arguments for transformer layers.
Args:
input_pos (Optional[torch.Tensor]): The position of the current sequence.
mask (Optional[torch.Tensor]): The attention mask.
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
Returns:
Dict[str, Any]: A dictionary of keyword arguments for the transformer layers.
"""
if context is not None:
context = context.to(self.precision)
if isinstance(mask, torch.Tensor) and mask.ndim == 2:
mask = mask[None, None, :, :]
if isinstance(context_mask, torch.Tensor) and context_mask.ndim == 2:
context_mask = context_mask[None, None, :, :]
layer_kwargs = {
"mask": mask,
"context": context,
"context_mask": context_mask,
}
layer_kwargs["input_pos"] = input_pos
layer_kwargs["rope"] = self.rope
return layer_kwargs
def apply_abs_pos_emb(self, x: torch.Tensor, input_pos: int = None) -> torch.Tensor:
"""
Applies the absolute position embeddings to the input tensor.
"""
abs_pos_emb = self.abs_pos_emb
abs_pos_emb = abs_pos_emb[:, input_pos, :] if input_pos is not None else abs_pos_emb
return x + abs_pos_emb
@torch.no_grad()
def expand_vocab(
self, new_vocab_size: int, init_method: str = "gaussian", multiple_of=64, expand_output_layer=True
):
"""
Expands the vocabulary of the model to the new size.
Args:
new_vocab_size (int): The new vocabulary size.
init_method (str): The initialization method for new embeddings.
Can be "zero" or "gaussian". Default is "gaussian".
multiple_of (int): The new vocabulary size must be a multiple of this value. Defaults to 64 to fully
leverage the power of NVIDIA TensorCore (source 1: https://x.com/karpathy/status/1621578354024677377,
source 2: https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc)
expand_output_layer (bool): Whether to also expand the output layer. Defaults to True.
Returns:
None
"""
if new_vocab_size <= self.vocab_size:
raise ValueError(
f"New vocabulary size ({new_vocab_size}) must be " f"larger than current size ({self.vocab_size})"
)
if new_vocab_size % multiple_of != 0:
log.debug(f"New vocabulary size must be a multiple of {multiple_of}. Obtained {new_vocab_size}.")
new_vocab_size = (new_vocab_size // multiple_of + 1) * multiple_of
log.debug(f"Rounded vocabulary size to {new_vocab_size}.")
# Resize token embeddings
old_embeddings = self.tok_embeddings
tensor_kwargs = {"device": old_embeddings.weight.device, "dtype": old_embeddings.weight.dtype}
self.tok_embeddings = self._create_token_embeddings(vocab_size=new_vocab_size).to(**tensor_kwargs)
# Initialize new embeddings
if init_method not in ["zero", "gaussian"]:
raise ValueError(f"Unknown initialization method: {init_method}")
# The default initialization of nn.Embedding is Gaussian, so we don't need to do anything
# if init_method == "gaussian". Only if init_method == "zero", we need to zero out the new embeddings.
if init_method == "zero":
self.tok_embeddings.weight.data[self.vocab_size :].zero_()
# Copy old embeddings
log.debug(
f"old_embeddings: {old_embeddings.weight.data.shape}, new_embeddings: {self.tok_embeddings.weight.data.shape}, vocab_size: {self.vocab_size}"
)
self.tok_embeddings.weight.data[: self.vocab_size] = old_embeddings.weight.data
# Resize output layer
old_output = self.output
self.output = self._create_output_projection(vocab_size=new_vocab_size if expand_output_layer else None)
# Initialize new output weights
self.output.weight.data[self.vocab_size :].zero_()
# Copy old output weights
self.output.weight.data[: self.vocab_size] = old_output.weight.data
# Update vocab size
self.vocab_size = new_vocab_size
log.debug(f"Expanded vocabulary size to {new_vocab_size}")
def state_dict(self, *args, **kwargs):
"""
Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8).
"""
state_dict = super().state_dict(*args, **kwargs)
return process_state_dict(state_dict)
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False):
"""
Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by
TransformerEngine for FP8).
"""
state_dict = process_state_dict(state_dict)
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign)
if strict:
actual_missing_keys = []
for key in missing_keys:
if not any(substring in key for substring in substrings_to_ignore):
actual_missing_keys.append(key)
if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0:
raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}")
missing_keys = actual_missing_keys
return _IncompatibleKeys(missing_keys, unexpected_keys)
|