|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Quantizers for discrete image and video tokenization.""" |
|
|
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
|
|
from .ar_tokenizer_utils import default, pack_one, round_ste, unpack_one |
|
|
|
|
|
class FSQuantizer(nn.Module): |
|
"""Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505 |
|
|
|
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/ |
|
vector_quantize_pytorch/finite_scalar_quantization.py |
|
[Copyright (c) 2020 Phil Wang] |
|
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE |
|
""" |
|
|
|
def __init__( |
|
self, |
|
levels: list[int], |
|
dim: Optional[int] = None, |
|
num_codebooks=1, |
|
keep_num_codebooks_dim: Optional[bool] = None, |
|
scale: Optional[float] = None, |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
self.dtype = ignore_kwargs.get("dtype", torch.float32) |
|
_levels = torch.tensor(levels, dtype=torch.int32) |
|
self.register_buffer("_levels", _levels, persistent=False) |
|
|
|
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=torch.int32) |
|
self.register_buffer("_basis", _basis, persistent=False) |
|
|
|
self.scale = scale |
|
|
|
codebook_dim = len(levels) |
|
self.codebook_dim = codebook_dim |
|
|
|
effective_codebook_dim = codebook_dim * num_codebooks |
|
self.num_codebooks = num_codebooks |
|
self.effective_codebook_dim = effective_codebook_dim |
|
|
|
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) |
|
assert not (num_codebooks > 1 and not keep_num_codebooks_dim) |
|
self.keep_num_codebooks_dim = keep_num_codebooks_dim |
|
|
|
self.dim = default(dim, len(_levels) * num_codebooks) |
|
|
|
has_projections = self.dim != effective_codebook_dim |
|
self.project_in = nn.Linear(self.dim, effective_codebook_dim) if has_projections else nn.Identity() |
|
self.project_out = nn.Linear(effective_codebook_dim, self.dim) if has_projections else nn.Identity() |
|
self.has_projections = has_projections |
|
|
|
self.codebook_size = self._levels.prod().item() |
|
|
|
implicit_codebook = self.indices_to_codes(torch.arange(self.codebook_size), project_out=False) |
|
self.register_buffer("implicit_codebook", implicit_codebook, persistent=False) |
|
|
|
def bound(self, z: torch.Tensor, eps: float = 1e-3) -> torch.Tensor: |
|
"""Bound `z`, an array of shape (..., d).""" |
|
half_l = (self._levels - 1) * (1 + eps) / 2 |
|
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0) |
|
shift = (offset / half_l).atanh() |
|
return (z + shift).tanh() * half_l - offset |
|
|
|
def quantize(self, z: torch.Tensor) -> torch.Tensor: |
|
"""Quantizes z, returns quantized zhat, same shape as z.""" |
|
quantized = round_ste(self.bound(z)) |
|
half_width = self._levels // 2 |
|
return quantized / half_width |
|
|
|
def _scale_and_shift(self, zhat_normalized: torch.Tensor) -> torch.Tensor: |
|
half_width = self._levels // 2 |
|
return (zhat_normalized * half_width) + half_width |
|
|
|
def _scale_and_shift_inverse(self, zhat: torch.Tensor) -> torch.Tensor: |
|
half_width = self._levels // 2 |
|
return (zhat - half_width) / half_width |
|
|
|
def codes_to_indices(self, zhat: torch.Tensor) -> torch.Tensor: |
|
"""Converts a `code` to an index in the codebook.""" |
|
assert zhat.shape[-1] == self.codebook_dim |
|
zhat = self._scale_and_shift(zhat).float() |
|
return (zhat * self._basis).sum(dim=-1).to(torch.int32) |
|
|
|
def indices_to_codes(self, indices: torch.Tensor, project_out=True) -> torch.Tensor: |
|
"""Inverse of `codes_to_indices`.""" |
|
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) |
|
indices = rearrange(indices, "... -> ... 1") |
|
codes_non_centered = (indices // self._basis) % self._levels |
|
codes = self._scale_and_shift_inverse(codes_non_centered) |
|
|
|
if self.keep_num_codebooks_dim: |
|
codes = rearrange(codes, "... c d -> ... (c d)") |
|
|
|
if project_out: |
|
codes = self.project_out(codes) |
|
|
|
if is_img_or_video: |
|
codes = rearrange(codes, "b ... d -> b d ...") |
|
|
|
return codes.to(self.dtype) |
|
|
|
def forward(self, z: torch.Tensor) -> torch.Tensor: |
|
""" |
|
einstein notation |
|
b - batch |
|
n - sequence (or flattened spatial dimensions) |
|
d - feature dimension, which is also log2(codebook size) |
|
c - number of codebook dim |
|
""" |
|
is_img_or_video = z.ndim >= 4 |
|
|
|
|
|
|
|
if is_img_or_video: |
|
z = rearrange(z, "b d ... -> b ... d") |
|
z, ps = pack_one(z, "b * d") |
|
|
|
assert z.shape[-1] == self.dim, f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}" |
|
|
|
z = self.project_in(z) |
|
|
|
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks) |
|
|
|
codes = self.quantize(z) |
|
indices = self.codes_to_indices(codes) |
|
|
|
codes = rearrange(codes, "b n c d -> b n (c d)") |
|
|
|
out = self.project_out(codes) |
|
|
|
|
|
|
|
if is_img_or_video: |
|
out = unpack_one(out, ps, "b * d") |
|
out = rearrange(out, "b ... d -> b d ...") |
|
indices = unpack_one(indices, ps, "b * c") |
|
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2, 3], keepdim=True)) |
|
else: |
|
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2], keepdim=True)).unsqueeze(1) |
|
|
|
if not self.keep_num_codebooks_dim: |
|
indices = rearrange(indices, "... 1 -> ...") |
|
|
|
return (indices, out.to(self.dtype), dummy_loss) |
|
|