File size: 6,536 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Quantizers for discrete image and video tokenization."""

from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange

from .ar_tokenizer_utils import default, pack_one, round_ste, unpack_one


class FSQuantizer(nn.Module):
    """Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505

    Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/
    vector_quantize_pytorch/finite_scalar_quantization.py
    [Copyright (c) 2020 Phil Wang]
    https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE
    """

    def __init__(
        self,
        levels: list[int],
        dim: Optional[int] = None,
        num_codebooks=1,
        keep_num_codebooks_dim: Optional[bool] = None,
        scale: Optional[float] = None,
        **ignore_kwargs,
    ):
        super().__init__()
        self.dtype = ignore_kwargs.get("dtype", torch.float32)
        _levels = torch.tensor(levels, dtype=torch.int32)
        self.register_buffer("_levels", _levels, persistent=False)

        _basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=torch.int32)
        self.register_buffer("_basis", _basis, persistent=False)

        self.scale = scale

        codebook_dim = len(levels)
        self.codebook_dim = codebook_dim

        effective_codebook_dim = codebook_dim * num_codebooks
        self.num_codebooks = num_codebooks
        self.effective_codebook_dim = effective_codebook_dim

        keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
        assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
        self.keep_num_codebooks_dim = keep_num_codebooks_dim

        self.dim = default(dim, len(_levels) * num_codebooks)

        has_projections = self.dim != effective_codebook_dim
        self.project_in = nn.Linear(self.dim, effective_codebook_dim) if has_projections else nn.Identity()
        self.project_out = nn.Linear(effective_codebook_dim, self.dim) if has_projections else nn.Identity()
        self.has_projections = has_projections

        self.codebook_size = self._levels.prod().item()

        implicit_codebook = self.indices_to_codes(torch.arange(self.codebook_size), project_out=False)
        self.register_buffer("implicit_codebook", implicit_codebook, persistent=False)

    def bound(self, z: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
        """Bound `z`, an array of shape (..., d)."""
        half_l = (self._levels - 1) * (1 + eps) / 2
        offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
        shift = (offset / half_l).atanh()
        return (z + shift).tanh() * half_l - offset

    def quantize(self, z: torch.Tensor) -> torch.Tensor:
        """Quantizes z, returns quantized zhat, same shape as z."""
        quantized = round_ste(self.bound(z))
        half_width = self._levels // 2  # Renormalize to [-1, 1].
        return quantized / half_width

    def _scale_and_shift(self, zhat_normalized: torch.Tensor) -> torch.Tensor:
        half_width = self._levels // 2
        return (zhat_normalized * half_width) + half_width

    def _scale_and_shift_inverse(self, zhat: torch.Tensor) -> torch.Tensor:
        half_width = self._levels // 2
        return (zhat - half_width) / half_width

    def codes_to_indices(self, zhat: torch.Tensor) -> torch.Tensor:
        """Converts a `code` to an index in the codebook."""
        assert zhat.shape[-1] == self.codebook_dim
        zhat = self._scale_and_shift(zhat).float()
        return (zhat * self._basis).sum(dim=-1).to(torch.int32)

    def indices_to_codes(self, indices: torch.Tensor, project_out=True) -> torch.Tensor:
        """Inverse of `codes_to_indices`."""
        is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
        indices = rearrange(indices, "... -> ... 1")
        codes_non_centered = (indices // self._basis) % self._levels
        codes = self._scale_and_shift_inverse(codes_non_centered)

        if self.keep_num_codebooks_dim:
            codes = rearrange(codes, "... c d -> ... (c d)")

        if project_out:
            codes = self.project_out(codes)

        if is_img_or_video:
            codes = rearrange(codes, "b ... d -> b d ...")

        return codes.to(self.dtype)

    def forward(self, z: torch.Tensor) -> torch.Tensor:
        """
        einstein notation
        b - batch
        n - sequence (or flattened spatial dimensions)
        d - feature dimension, which is also log2(codebook size)
        c - number of codebook dim
        """
        is_img_or_video = z.ndim >= 4

        # standardize image or video into (batch, seq, dimension)

        if is_img_or_video:
            z = rearrange(z, "b d ... -> b ... d")
            z, ps = pack_one(z, "b * d")

        assert z.shape[-1] == self.dim, f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"

        z = self.project_in(z)

        z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)

        codes = self.quantize(z)
        indices = self.codes_to_indices(codes)

        codes = rearrange(codes, "b n c d -> b n (c d)")

        out = self.project_out(codes)

        # reconstitute image or video dimensions

        if is_img_or_video:
            out = unpack_one(out, ps, "b * d")
            out = rearrange(out, "b ... d -> b d ...")
            indices = unpack_one(indices, ps, "b * c")
            dummy_loss = torch.zeros_like(out.mean(dim=[1, 2, 3], keepdim=True))
        else:
            dummy_loss = torch.zeros_like(out.mean(dim=[1, 2], keepdim=True)).unsqueeze(1)

        if not self.keep_num_codebooks_dim:
            indices = rearrange(indices, "... 1 -> ...")

        return (indices, out.to(self.dtype), dummy_loss)