DiffusionText2WorldGeneration / ar_modules_attention.py
EthanZyh's picture
copied from EthanZyh/DiffusionText2WorldGeneration
8c31d70
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Union
import torch
from torch import nn
from .ar_modules_embedding import RotaryPositionEmbedding
from .ar_modules_normalization import create_norm
class Attention(nn.Module):
"""
Attenion layer with KV cache.
"""
def __init__(
self,
n_heads: int,
n_kv_heads: Union[int, None],
dim: int,
max_batch_size: int,
max_seq_len: int,
context_dim: Optional[int] = None,
use_qk_normalization: bool = False,
norm_type: str = "rmsnorm",
norm_eps: float = 1e-5,
causal_mask: Optional[bool] = True,
head_dim: Optional[int] = None,
fuse_qkv: bool = False,
precision: str = "bfloat16",
attn_type: str = "self",
):
"""
Initializes the GQA module.
Args:
n_heads (int): The number of attention heads.
n_kv_heads (int, optional): The number of key-value attention heads. None defaults to n_heads.
dim (int): The dimensionality of the input and output.
max_batch_size (int): The maximum batch size.
max_seq_len (int): The maximum sequence length.
context_dim (int, optional): The dimensionality of the context for cross-attn. Defaults to None.
use_qk_normalization (bool, optional): Whether to apply QK normalization. Defaults to False.
norm_type (str, optional): The type of normalization layer. Defaults to "rmsnorm".
norm_eps (float, optional): The epsilon value for normalization. Defaults to 1e-5.
causal_mask (bool, optional): Whether to use causal mask. Defaults to True.
head_dim (int, optional): The dimensionality of each attention head. If None, defaults to dim // n_heads.
fuse_qkv (bool, optional): Whether to fuse QKV. Defaults to False.
precision (str, optional): The precision of the module. Defaults to "bfloat16".
attn_type (str, optional): The type of attention. Defaults to "self".
"""
super().__init__()
assert attn_type in ["self", "cross", "full"], f"Invalid attention type: {attn_type}"
self.attn_type = attn_type
context_dim = dim if context_dim is None else context_dim
self.dim = dim
self.context_dim = context_dim
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_local_heads = n_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = dim // n_heads if head_dim is None else head_dim
self.causal_mask = causal_mask
self.fuse_qkv = fuse_qkv
self.precision = precision
if fuse_qkv:
assert context_dim == dim, f"Fuse QKV requires context_dim ({context_dim}) to be equal to dim ({dim})"
self.total_local_head_dim = (self.n_local_heads + 2 * self.n_local_kv_heads) * self.head_dim
self.wqkv = nn.Linear(dim, self.total_local_head_dim, bias=False)
# Register hook to load fused QKV weights
self._register_load_state_dict_pre_hook(self.load_hook)
else:
self.wq = nn.Linear(dim, self.n_local_heads * self.head_dim, bias=False)
self.wk = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(self.n_local_heads * self.head_dim, dim, bias=False)
self.max_batch_size = max_batch_size
self.max_seq_len = max_seq_len
if self.attn_type == "self":
# Cache for key and value tensors
self.init_kv_cache()
# QK normalization layers
if use_qk_normalization:
self.q_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
self.k_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
self.use_qk_normalization = use_qk_normalization
self.to(dtype=getattr(torch, self.precision))
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def init_kv_cache(self, dtype=None):
cache_shape = (self.max_batch_size, self.n_local_kv_heads, self.max_seq_len, self.head_dim)
if dtype is None:
dtype = getattr(torch, self.precision)
if self.attn_type == "self":
self.cache_k = torch.zeros(cache_shape, dtype=dtype).cuda()
self.cache_v = torch.zeros(cache_shape, dtype=dtype).cuda()
def forward(
self,
x: torch.Tensor,
rope: RotaryPositionEmbedding,
input_pos: torch.Tensor,
mask: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
):
"""
Forward pass of GQA.
Args:
x: The input tensor of shape (batch_size, seq_len, dim).
rope: The rotary positional embedding module.
input_pos: The starting position of the current sequence.
mask: The attention mask tensor.
context: The context tensor of shape (batch_size, context_len, dim).
Returns:
The output tensor after applying GQA.
"""
bsz, seqlen, _ = x.shape
# Use one single module to handle both self-attn and cross-attn
context = x if context is None else context
context_len = seqlen if context is None else context.shape[1]
if self.fuse_qkv:
q_size = self.n_local_heads * self.head_dim
kv_size = self.n_local_kv_heads * self.head_dim
xq, xk, xv = self.wqkv(x).split([q_size, kv_size, kv_size], dim=-1)
else:
# Compute query, key, and value projections
xq, xk, xv = self.wq(x), self.wk(context), self.wv(context)
# Reshape projections
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
# QK normalization
if self.use_qk_normalization:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
# Apply rotary positional embeddings to queries and keys
# Only apply RoPE to self-attention!
if self.attn_type in ["self", "full"]:
xq, xk = rope(xq, xk, input_pos, seqlen)
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
# xq: (bs, n_local_heads, seqlen, head_dim)
# xk: (bs, n_kv_heads, cache_len + context_len, head_dim)
# xv: (bs, n_kv_heads, cache_len + context_len, head_dim)
if self.attn_type == "self":
# Update cache with current key and value tensors
assert input_pos is not None
self.cache_k[:bsz, :, input_pos] = xk
self.cache_v[:bsz, :, input_pos] = xv
keys, values = (
self.cache_k[:bsz, :, :],
self.cache_v[:bsz, :, :],
)
else:
keys, values = xk, xv
# Repeat keys and values if necessary
keys = keys.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
values = values.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
# For self-attention, `is_causal` should be set to False when KV cache is pre-computed and used,
# since the masking is handled outside this attention module.
# For cross-attention, it's always full-attn without causal mask
is_causal = False
output = scaled_dot_product_attention(
xq,
keys,
values,
head_dim=self.head_dim,
mask=mask,
is_causal=is_causal,
dropout_p=0.0,
)
output = output.view(bsz, seqlen, -1)
output = self.wo(output)
return output
def scaled_dot_product_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
head_dim: int,
mask: Optional[torch.Tensor] = None,
is_causal: Optional[bool] = None,
dropout_p: float = 0.0,
) -> torch.Tensor:
"""
PyTorch's native implementation of Flash Attention 2.
If `is_causal` is given, then the causal attention mask is applied accordingly:
- If `is_causal` is True, the standard upper-left causal attention masking is applied.
- If `is_causal` is False, no attention mask is applied, unless an explicit mask tensor is
provided (i.e., `mask is not None`).
If `is_causal` is not given (i.e., `is_causal is None`), then the attention mask is applied
based on the provided mask tensor:
- If no explicit attention mask is given (i.e., `mask is None`), `is_causal` is set to True,
leading to the standard upper-left causal attention masking.
- If an attention mask is given (i.e., `mask is not None`), the provided mask is used,
and `is_causal` is set to False.
Args:
q (torch.Tensor): Query tensor
k (torch.Tensor): Key tensor
v (torch.Tensor): Value tensor
head_dim (int): Dimension of each attention head
mask (Optional[torch.Tensor], optional): Attention mask. Defaults to None.
is_causal (Optional[bool], optional): Whether to apply causal attention mask. Defaults to None.
dropout_p (float, optional): Dropout rate. Defaults to 0.0.
Returns:
torch.Tensor: Output tensor after applying scaled dot-product attention
"""
scale = 1.0 / math.sqrt(head_dim)
if is_causal is None:
is_causal = mask is None
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask,
dropout_p=dropout_p,
scale=scale,
is_causal=is_causal,
)
return y.transpose(1, 2).contiguous()