File size: 10,898 Bytes
8c31d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional, Union

import torch
from torch import nn

from .ar_modules_embedding import RotaryPositionEmbedding
from .ar_modules_normalization import create_norm


class Attention(nn.Module):
    """
    Attenion layer with KV cache.
    """

    def __init__(
        self,
        n_heads: int,
        n_kv_heads: Union[int, None],
        dim: int,
        max_batch_size: int,
        max_seq_len: int,
        context_dim: Optional[int] = None,
        use_qk_normalization: bool = False,
        norm_type: str = "rmsnorm",
        norm_eps: float = 1e-5,
        causal_mask: Optional[bool] = True,
        head_dim: Optional[int] = None,
        fuse_qkv: bool = False,
        precision: str = "bfloat16",
        attn_type: str = "self",
    ):
        """
        Initializes the GQA module.

        Args:
            n_heads (int): The number of attention heads.
            n_kv_heads (int, optional): The number of key-value attention heads. None defaults to n_heads.
            dim (int): The dimensionality of the input and output.
            max_batch_size (int): The maximum batch size.
            max_seq_len (int): The maximum sequence length.
            context_dim (int, optional): The dimensionality of the context for cross-attn. Defaults to None.
            use_qk_normalization (bool, optional): Whether to apply QK normalization. Defaults to False.
            norm_type (str, optional): The type of normalization layer. Defaults to "rmsnorm".
            norm_eps (float, optional): The epsilon value for normalization. Defaults to 1e-5.
            causal_mask (bool, optional): Whether to use causal mask. Defaults to True.
            head_dim (int, optional): The dimensionality of each attention head. If None, defaults to dim // n_heads.
            fuse_qkv (bool, optional): Whether to fuse QKV. Defaults to False.
            precision (str, optional): The precision of the module. Defaults to "bfloat16".
            attn_type (str, optional): The type of attention. Defaults to "self".
        """
        super().__init__()
        assert attn_type in ["self", "cross", "full"], f"Invalid attention type: {attn_type}"
        self.attn_type = attn_type
        context_dim = dim if context_dim is None else context_dim

        self.dim = dim
        self.context_dim = context_dim
        self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
        self.n_local_kv_heads = self.n_kv_heads
        self.n_local_heads = n_heads
        self.n_rep = self.n_local_heads // self.n_local_kv_heads
        self.head_dim = dim // n_heads if head_dim is None else head_dim
        self.causal_mask = causal_mask
        self.fuse_qkv = fuse_qkv
        self.precision = precision

        if fuse_qkv:
            assert context_dim == dim, f"Fuse QKV requires context_dim ({context_dim}) to be equal to dim ({dim})"
            self.total_local_head_dim = (self.n_local_heads + 2 * self.n_local_kv_heads) * self.head_dim
            self.wqkv = nn.Linear(dim, self.total_local_head_dim, bias=False)
            # Register hook to load fused QKV weights
            self._register_load_state_dict_pre_hook(self.load_hook)
        else:
            self.wq = nn.Linear(dim, self.n_local_heads * self.head_dim, bias=False)
            self.wk = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
            self.wv = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
        self.wo = nn.Linear(self.n_local_heads * self.head_dim, dim, bias=False)

        self.max_batch_size = max_batch_size
        self.max_seq_len = max_seq_len

        if self.attn_type == "self":
            # Cache for key and value tensors
            self.init_kv_cache()

        # QK normalization layers
        if use_qk_normalization:
            self.q_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
            self.k_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)

        self.use_qk_normalization = use_qk_normalization

        self.to(dtype=getattr(torch, self.precision))

    def load_hook(self, state_dict, prefix, *args):
        if prefix + "wq.weight" in state_dict:
            wq = state_dict.pop(prefix + "wq.weight")
            wk = state_dict.pop(prefix + "wk.weight")
            wv = state_dict.pop(prefix + "wv.weight")
            state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])

    def init_kv_cache(self, dtype=None):
        cache_shape = (self.max_batch_size, self.n_local_kv_heads, self.max_seq_len, self.head_dim)
        if dtype is None:
            dtype = getattr(torch, self.precision)
        if self.attn_type == "self":
            self.cache_k = torch.zeros(cache_shape, dtype=dtype).cuda()
            self.cache_v = torch.zeros(cache_shape, dtype=dtype).cuda()

    def forward(
        self,
        x: torch.Tensor,
        rope: RotaryPositionEmbedding,
        input_pos: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        context: Optional[torch.Tensor] = None,
    ):
        """
        Forward pass of GQA.

        Args:
            x: The input tensor of shape (batch_size, seq_len, dim).
            rope: The rotary positional embedding module.
            input_pos: The starting position of the current sequence.
            mask: The attention mask tensor.
            context: The context tensor of shape (batch_size, context_len, dim).

        Returns:
            The output tensor after applying GQA.
        """
        bsz, seqlen, _ = x.shape

        # Use one single module to handle both self-attn and cross-attn
        context = x if context is None else context
        context_len = seqlen if context is None else context.shape[1]

        if self.fuse_qkv:
            q_size = self.n_local_heads * self.head_dim
            kv_size = self.n_local_kv_heads * self.head_dim
            xq, xk, xv = self.wqkv(x).split([q_size, kv_size, kv_size], dim=-1)
        else:
            # Compute query, key, and value projections
            xq, xk, xv = self.wq(x), self.wk(context), self.wv(context)

        # Reshape projections
        xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        xk = xk.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
        xv = xv.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)

        # QK normalization
        if self.use_qk_normalization:
            xq = self.q_norm(xq)
            xk = self.k_norm(xk)

        # Apply rotary positional embeddings to queries and keys
        # Only apply RoPE to self-attention!
        if self.attn_type in ["self", "full"]:
            xq, xk = rope(xq, xk, input_pos, seqlen)

        xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
        # xq: (bs, n_local_heads, seqlen, head_dim)
        # xk: (bs, n_kv_heads, cache_len + context_len, head_dim)
        # xv: (bs, n_kv_heads, cache_len + context_len, head_dim)
        if self.attn_type == "self":
            # Update cache with current key and value tensors
            assert input_pos is not None
            self.cache_k[:bsz, :, input_pos] = xk
            self.cache_v[:bsz, :, input_pos] = xv
            keys, values = (
                self.cache_k[:bsz, :, :],
                self.cache_v[:bsz, :, :],
            )
        else:
            keys, values = xk, xv

        # Repeat keys and values if necessary
        keys = keys.repeat_interleave(self.n_rep, dim=1)  # (bs, n_local_heads, cache_len + context_len, head_dim)
        values = values.repeat_interleave(self.n_rep, dim=1)  # (bs, n_local_heads, cache_len + context_len, head_dim)

        # For self-attention, `is_causal` should be set to False when KV cache is pre-computed and used,
        # since the masking is handled outside this attention module.
        # For cross-attention, it's always full-attn without causal mask
        is_causal = False
        output = scaled_dot_product_attention(
            xq,
            keys,
            values,
            head_dim=self.head_dim,
            mask=mask,
            is_causal=is_causal,
            dropout_p=0.0,
        )
        output = output.view(bsz, seqlen, -1)
        output = self.wo(output)
        return output


def scaled_dot_product_attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    head_dim: int,
    mask: Optional[torch.Tensor] = None,
    is_causal: Optional[bool] = None,
    dropout_p: float = 0.0,
) -> torch.Tensor:
    """
    PyTorch's native implementation of Flash Attention 2.

    If `is_causal` is given, then the causal attention mask is applied accordingly:
    - If `is_causal` is True, the standard upper-left causal attention masking is applied.
    - If `is_causal` is False, no attention mask is applied, unless an explicit mask tensor is
      provided (i.e., `mask is not None`).

    If `is_causal` is not given (i.e., `is_causal is None`), then the attention mask is applied
    based on the provided mask tensor:
    - If no explicit attention mask is given (i.e., `mask is None`), `is_causal` is set to True,
    leading to the standard upper-left causal attention masking.
    - If an attention mask is given (i.e., `mask is not None`), the provided mask is used,
    and `is_causal` is set to False.

    Args:
        q (torch.Tensor): Query tensor
        k (torch.Tensor): Key tensor
        v (torch.Tensor): Value tensor
        head_dim (int): Dimension of each attention head
        mask (Optional[torch.Tensor], optional): Attention mask. Defaults to None.
        is_causal (Optional[bool], optional): Whether to apply causal attention mask. Defaults to None.
        dropout_p (float, optional): Dropout rate. Defaults to 0.0.

    Returns:
        torch.Tensor: Output tensor after applying scaled dot-product attention
    """
    scale = 1.0 / math.sqrt(head_dim)
    if is_causal is None:
        is_causal = mask is None
    y = torch.nn.functional.scaled_dot_product_attention(
        q,
        k,
        v,
        attn_mask=mask,
        dropout_p=dropout_p,
        scale=scale,
        is_causal=is_causal,
    )
    return y.transpose(1, 2).contiguous()