File size: 4,742 Bytes
92dff2a 8810cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
tags:
- vision
- DPO
- RLHF
- preference
- feedback
- reward model
- preference model
---
#### Robust Visual Reward Model
Robust visual reward model (RoVRM) is developed through a three-phase progressive training (i.e., pre-training with textual preference data→fine-tuning with image caption-based preference data→fine-tuning with visual preference data), and optimal transport-based selective preference data.
These approaches effectively transfer preferences from auxiliary textual data to enhance the model's robustness.
The repository hosts the RoVRM built on the LLaVA-1.5-7B model.
We employed RoVRM for best-of-$n$ sampling and RL training, demonstrating its capability to significantly improve performance and reduce hallucination in large vision-language models.
Detailed training information and experimental results are available in our [paper](https://arxiv.org/abs/2408.12109).

## How to use the model
We recommend using the [Vision-LLM-Alignment](https://github.com/wangclnlp/Vision-LLM-Alignment) system to run our RoVRM, as it was also used for its training.
To evaluate a question-answer pair with RoVRM, follow two steps:
1. Convert the safetensor format model to ```pytorch_model.bin``` by using the ```convert_pytorch_bin.py``` script.
2. Download the Vision-LLM-Alignment repository and run the demo from the first-level directory within the repository.
```python
from transformers import AutoProcessor
from training.utils.model.third_party_model.hf_model.modeling_llava import LlavaForConditionalGeneration
from torch.utils.data.dataloader import default_collate
from PIL import Image
import copy
import torch
import argparse
import os
device = torch.device("cuda:0")
from training.utils.model.modeling_reward import create_reward_or_critic_model
# Set vis_llm_base path and path of the checkpoint
# You need to load the llava-1.5-7b model to build an initialized RoVRM.
base_path = "base_models/llava-1.5-7b-hf"
# the checkpoint of RoVRM.
ckpt_path = "models/pytorch_model.bin"
processor = AutoProcessor.from_pretrained(base_path)
image_processor = processor.image_processor
tokenizer = processor.tokenizer
tokenizer.add_bos_token = True
tokenizer.add_eos_token = True
args = {
"model_architecture": "llava",
"lang_decoder_update": False,
"from_checkpoint": base_path
}
args = argparse.Namespace(**args)
model, image_processor, tokenizer = create_reward_or_critic_model(
text_tokenizer=tokenizer,
args=args)
model.load_state_dict(torch.load(os.path.join(ckpt_path, 'pytorch_model.bin'), map_location='cpu'), strict=False)
model.to(device)
# Set input sentence and path of the input image
# <image> is necessary when there is an image input
input_sen = "USER: ### Image:<image>\nIdentify and describe each object in the image in detail.\nASSISTANT: In the image, there is a cute, colorful cartoon girl sitting on a chair at a wooden table. She is reading a book, which is a prominent object in the scene. The table and chair are also present, adding to the overall setting. As this is a cartoon-style image, the girl and the book may have a more exaggerated or simplified design compared to real-life objects. "
img_path = "llava1.5_raw_images_00011_000118793.jpg"
# Load and preprocess the image
image = Image.open(img_path).convert("RGB")
image = image_processor(image)
try:
image = image['pixel_values'][0]
except:
pass
input_sen = tokenizer(input_sen,
return_tensors=None,
padding="do_not_pad",
truncation=True,
max_length=512,)
input_sen.update(labels=copy.deepcopy(input_sen["input_ids"]))
input_sen.update(image=image)
reward_scores = model(img=default_collate(image).reshape((-1,) + image[0].shape[-3:]).unsqueeze(0).to(device),
lang=torch.LongTensor(input_sen["input_ids"]).unsqueeze(0).to(device),
attention_mask=torch.LongTensor(input_sen["attention_mask"]).unsqueeze(0).to(device),
input_labels=torch.LongTensor(input_sen["labels"]).unsqueeze(0).to(device))
print(reward_scores[0].item())
```
Please cite our paper if you find RoVRM helpful in your work🌹🌹🌹:
```
@inproceedings{wang2025rovrm,
title={Rovrm: A robust visual reward model optimized via auxiliary textual preference data},
author={Wang, Chenglong and Gan, Yang and Huo, Yifu and Mu, Yongyu and Yang, Murun and He, Qiaozhi and Xiao, Tong and Zhang, Chunliang and Liu, Tongran and Zhu, Jingbo},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={39},
number={24},
pages={25336--25344},
year={2025}
}
``` |