Robust Visual Reward Model
Robust visual reward model (RoVRM) is developed through a three-phase progressive training (i.e., pre-training with textual preference data→fine-tuning with image caption-based preference data→fine-tuning with visual preference data), and optimal transport-based selective preference data. These approaches effectively transfer preferences from auxiliary textual data to enhance the model's robustness. The repository hosts the RoVRM built on the LLaVA-1.5-7B model. We employed RoVRM for best-of-$n$ sampling and RL training, demonstrating its capability to significantly improve performance and reduce hallucination in large vision-language models. Detailed training information and experimental results are available in our paper.
How to use the model
We recommend using the Vision-LLM-Alignment system to run our RoVRM, as it was also used for its training.
To evaluate a question-answer pair with RoVRM, follow two steps:
- Convert the safetensor format model to
pytorch_model.bin
by using theconvert_pytorch_bin.py
script. - Download the Vision-LLM-Alignment repository and run the demo from the first-level directory within the repository.
from transformers import AutoProcessor
from training.utils.model.third_party_model.hf_model.modeling_llava import LlavaForConditionalGeneration
from torch.utils.data.dataloader import default_collate
from PIL import Image
import copy
import torch
import argparse
import os
device = torch.device("cuda:0")
from training.utils.model.modeling_reward import create_reward_or_critic_model
# Set vis_llm_base path and path of the checkpoint
# You need to load the llava-1.5-7b model to build an initialized RoVRM.
base_path = "base_models/llava-1.5-7b-hf"
# the checkpoint of RoVRM.
ckpt_path = "models/pytorch_model.bin"
processor = AutoProcessor.from_pretrained(base_path)
image_processor = processor.image_processor
tokenizer = processor.tokenizer
tokenizer.add_bos_token = True
tokenizer.add_eos_token = True
args = {
"model_architecture": "llava",
"lang_decoder_update": False,
"from_checkpoint": base_path
}
args = argparse.Namespace(**args)
model, image_processor, tokenizer = create_reward_or_critic_model(
text_tokenizer=tokenizer,
args=args)
model.load_state_dict(torch.load(os.path.join(ckpt_path, 'pytorch_model.bin'), map_location='cpu'), strict=False)
model.to(device)
# Set input sentence and path of the input image
# <image> is necessary when there is an image input
input_sen = "USER: ### Image:<image>\nIdentify and describe each object in the image in detail.\nASSISTANT: In the image, there is a cute, colorful cartoon girl sitting on a chair at a wooden table. She is reading a book, which is a prominent object in the scene. The table and chair are also present, adding to the overall setting. As this is a cartoon-style image, the girl and the book may have a more exaggerated or simplified design compared to real-life objects. "
img_path = "llava1.5_raw_images_00011_000118793.jpg"
# Load and preprocess the image
image = Image.open(img_path).convert("RGB")
image = image_processor(image)
try:
image = image['pixel_values'][0]
except:
pass
input_sen = tokenizer(input_sen,
return_tensors=None,
padding="do_not_pad",
truncation=True,
max_length=512,)
input_sen.update(labels=copy.deepcopy(input_sen["input_ids"]))
input_sen.update(image=image)
reward_scores = model(img=default_collate(image).reshape((-1,) + image[0].shape[-3:]).unsqueeze(0).to(device),
lang=torch.LongTensor(input_sen["input_ids"]).unsqueeze(0).to(device),
attention_mask=torch.LongTensor(input_sen["attention_mask"]).unsqueeze(0).to(device),
input_labels=torch.LongTensor(input_sen["labels"]).unsqueeze(0).to(device))
print(reward_scores[0].item())
Please cite our paper if you find RoVRM helpful in your work🌹🌹🌹:
@inproceedings{wang2025rovrm,
title={Rovrm: A robust visual reward model optimized via auxiliary textual preference data},
author={Wang, Chenglong and Gan, Yang and Huo, Yifu and Mu, Yongyu and Yang, Murun and He, Qiaozhi and Xiao, Tong and Zhang, Chunliang and Liu, Tongran and Zhu, Jingbo},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={39},
number={24},
pages={25336--25344},
year={2025}
}