NiloofarMomeni's picture
End of training
33dfb7d verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - PQVD
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-strain
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: PQVD
          type: PQVD
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8021978021978022

distilhubert-finetuned-strain

This model is a fine-tuned version of ntu-spml/distilhubert on the PQVD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8113
  • Accuracy: 0.8022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6067 1.0 92 0.5729 0.7473
0.6384 2.0 184 0.5746 0.7692
0.522 3.0 276 0.5744 0.7582
0.4009 4.0 368 0.6686 0.7473
0.1977 5.0 460 0.5451 0.7802
0.4943 6.0 552 0.6118 0.7802
0.2251 7.0 644 0.5647 0.7912
0.0488 8.0 736 0.6797 0.8352
0.2085 9.0 828 0.8064 0.7912
0.1512 10.0 920 0.8113 0.8022

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0