distilbert-base-uncased-ICU-Readmission-classification_test1.1_ClinicalBERT

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3311
  • F1: 0.5192

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1
0.6328 1.0 125 0.6717 0.7654
0.7109 2.0 250 0.6969 0.5385
0.5117 3.0 375 0.7038 0.6179
0.5039 4.0 500 0.7655 0.5487
0.457 5.0 625 0.8232 0.6667
0.625 6.0 750 0.9869 0.5472
0.8516 7.0 875 1.2391 0.5234
0.2031 8.0 1000 1.2022 0.5094
0.0559 9.0 1125 1.2742 0.5143
0.0505 10.0 1250 1.3311 0.5192

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for NgechuJohn/distilbert-base-uncased-ICU-Readmission-classification_test1.1_ClinicalBERT

Adapter
(234)
this model