Replace small with tiny

#2
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -9,7 +9,7 @@ datasets:
9
  - NbAiLab/ncc_speech
10
  - NbAiLab/NST
11
  - NbAiLab/NPSC
12
- base_model: openai/whisper-small
13
  tags:
14
  - audio
15
  - asr
@@ -28,9 +28,9 @@ widget:
28
  ---
29
 
30
 
31
- # NB-Whisper Small
32
 
33
- Introducing the **_Norwegian NB-Whisper Small model_**, proudly developed by the National Library of Norway. NB-Whisper is a cutting-edge series of models designed for automatic speech recognition (ASR) and speech translation. These models are based on the work of [OpenAI's Whisper](https://arxiv.org/abs/2212.04356). Each model in the series has been trained for 250,000 steps, utilizing a diverse dataset of 8 million samples. These samples consist of aligned audio clips, each 30 seconds long, culminating in a staggering 66,000 hours of speech. For an in-depth understanding of our training methodology and dataset composition, keep an eye out for our upcoming article.
34
 
35
  | Model Size | Parameters | Model |
36
  |------------|------------|------------|
@@ -63,7 +63,7 @@ While the main models are suitable for most transcription task, we demonstrate h
63
  - **Model type:** `whisper`
64
  - **Language(s) (NLP):** Norwegian, Norwegian Bokmål, Norwegian Nynorsk, English
65
  - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
66
- - **Trained from model:** [openai/whisper-small](https://huggingface.co/openai/whisper-small)
67
  - **Code Repository:** https://github.com/NbAiLab/nb-whisper/
68
  - **Paper:** _Coming soon_
69
  - **Demo:** _See Spaces on this page_
@@ -91,7 +91,7 @@ After this is done, you should be able to run this in Python:
91
  from transformers import pipeline
92
 
93
  # Load the model
94
- asr = pipeline("automatic-speech-recognition", "NbAiLabBeta/nb-whisper-small")
95
 
96
  #transcribe
97
  asr("king.mp3", generate_kwargs={'task': 'transcribe', 'language': 'no'})
@@ -220,14 +220,14 @@ $ wget -N https://github.com/NbAiLab/nb-whisper/raw/main/audio/king.mp3
220
  $ ffmpeg -i king.mp3 -ar 16000 -ac 1 -c:a pcm_s16le king.wav
221
 
222
  # Lets download the two ggml-files from this site
223
- wget -N https://huggingface.co/NbAiLab/nb-whisper-small/resolve/main/ggml-model.bin -O models/nb-small-ggml-model.bin
224
- wget -N https://huggingface.co/NbAiLab/nb-whisper-small/resolve/main/ggml-model-q5_0.bin -O models/nb-small-ggml-model-q5_0.bin
225
 
226
  # And run it with the f16 default model
227
- $ ./main -l no -m models/nb-small-ggml-model.bin king.wav
228
 
229
  # Or the quantized version
230
- $ ./main -l no -m models/nb-small-ggml-model-q5_0.bin king.wav
231
  ```
232
 
233
  ### WhisperX and Speaker Diarization
@@ -247,7 +247,7 @@ wget -N https://github.com/NbAiLab/nb-whisper/raw/main/audio/knuthamsun.mp3
247
  pip uninstall whisperx && pip install git+https://github.com/m-bain/whisperx.git@8540ff5985fceee764acbed94f656063d7f56540
248
 
249
  # Transcribe the test file. All transcripts will end up in the directory of the mp3-file
250
- whisperx knuthamsun.mp3 --model NbAiLabBeta/nb-whisper-small --language no --diarize
251
 
252
  ```
253
 
 
9
  - NbAiLab/ncc_speech
10
  - NbAiLab/NST
11
  - NbAiLab/NPSC
12
+ base_model: openai/whisper-tiny
13
  tags:
14
  - audio
15
  - asr
 
28
  ---
29
 
30
 
31
+ # NB-Whisper Tiny
32
 
33
+ Introducing the **_Norwegian NB-Whisper Tiny model_**, proudly developed by the National Library of Norway. NB-Whisper is a cutting-edge series of models designed for automatic speech recognition (ASR) and speech translation. These models are based on the work of [OpenAI's Whisper](https://arxiv.org/abs/2212.04356). Each model in the series has been trained for 250,000 steps, utilizing a diverse dataset of 8 million samples. These samples consist of aligned audio clips, each 30 seconds long, culminating in a staggering 66,000 hours of speech. For an in-depth understanding of our training methodology and dataset composition, keep an eye out for our upcoming article.
34
 
35
  | Model Size | Parameters | Model |
36
  |------------|------------|------------|
 
63
  - **Model type:** `whisper`
64
  - **Language(s) (NLP):** Norwegian, Norwegian Bokmål, Norwegian Nynorsk, English
65
  - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
66
+ - **Trained from model:** [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
67
  - **Code Repository:** https://github.com/NbAiLab/nb-whisper/
68
  - **Paper:** _Coming soon_
69
  - **Demo:** _See Spaces on this page_
 
91
  from transformers import pipeline
92
 
93
  # Load the model
94
+ asr = pipeline("automatic-speech-recognition", "NbAiLabBeta/nb-whisper-tiny")
95
 
96
  #transcribe
97
  asr("king.mp3", generate_kwargs={'task': 'transcribe', 'language': 'no'})
 
220
  $ ffmpeg -i king.mp3 -ar 16000 -ac 1 -c:a pcm_s16le king.wav
221
 
222
  # Lets download the two ggml-files from this site
223
+ wget -N https://huggingface.co/NbAiLab/nb-whisper-tiny/resolve/main/ggml-model.bin -O models/nb-tiny-ggml-model.bin
224
+ wget -N https://huggingface.co/NbAiLab/nb-whisper-tiny/resolve/main/ggml-model-q5_0.bin -O models/nb-tiny-ggml-model-q5_0.bin
225
 
226
  # And run it with the f16 default model
227
+ $ ./main -l no -m models/nb-tiny-ggml-model.bin king.wav
228
 
229
  # Or the quantized version
230
+ $ ./main -l no -m models/nb-tiny-ggml-model-q5_0.bin king.wav
231
  ```
232
 
233
  ### WhisperX and Speaker Diarization
 
247
  pip uninstall whisperx && pip install git+https://github.com/m-bain/whisperx.git@8540ff5985fceee764acbed94f656063d7f56540
248
 
249
  # Transcribe the test file. All transcripts will end up in the directory of the mp3-file
250
+ whisperx knuthamsun.mp3 --model NbAiLabBeta/nb-whisper-tiny --language no --diarize
251
 
252
  ```
253