Replace small with tiny
#2
by
PierreMesure
- opened
README.md
CHANGED
@@ -9,7 +9,7 @@ datasets:
|
|
9 |
- NbAiLab/ncc_speech
|
10 |
- NbAiLab/NST
|
11 |
- NbAiLab/NPSC
|
12 |
-
base_model: openai/whisper-
|
13 |
tags:
|
14 |
- audio
|
15 |
- asr
|
@@ -28,9 +28,9 @@ widget:
|
|
28 |
---
|
29 |
|
30 |
|
31 |
-
# NB-Whisper
|
32 |
|
33 |
-
Introducing the **_Norwegian NB-Whisper
|
34 |
|
35 |
| Model Size | Parameters | Model |
|
36 |
|------------|------------|------------|
|
@@ -63,7 +63,7 @@ While the main models are suitable for most transcription task, we demonstrate h
|
|
63 |
- **Model type:** `whisper`
|
64 |
- **Language(s) (NLP):** Norwegian, Norwegian Bokmål, Norwegian Nynorsk, English
|
65 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
66 |
-
- **Trained from model:** [openai/whisper-
|
67 |
- **Code Repository:** https://github.com/NbAiLab/nb-whisper/
|
68 |
- **Paper:** _Coming soon_
|
69 |
- **Demo:** _See Spaces on this page_
|
@@ -91,7 +91,7 @@ After this is done, you should be able to run this in Python:
|
|
91 |
from transformers import pipeline
|
92 |
|
93 |
# Load the model
|
94 |
-
asr = pipeline("automatic-speech-recognition", "NbAiLabBeta/nb-whisper-
|
95 |
|
96 |
#transcribe
|
97 |
asr("king.mp3", generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
@@ -220,14 +220,14 @@ $ wget -N https://github.com/NbAiLab/nb-whisper/raw/main/audio/king.mp3
|
|
220 |
$ ffmpeg -i king.mp3 -ar 16000 -ac 1 -c:a pcm_s16le king.wav
|
221 |
|
222 |
# Lets download the two ggml-files from this site
|
223 |
-
wget -N https://huggingface.co/NbAiLab/nb-whisper-
|
224 |
-
wget -N https://huggingface.co/NbAiLab/nb-whisper-
|
225 |
|
226 |
# And run it with the f16 default model
|
227 |
-
$ ./main -l no -m models/nb-
|
228 |
|
229 |
# Or the quantized version
|
230 |
-
$ ./main -l no -m models/nb-
|
231 |
```
|
232 |
|
233 |
### WhisperX and Speaker Diarization
|
@@ -247,7 +247,7 @@ wget -N https://github.com/NbAiLab/nb-whisper/raw/main/audio/knuthamsun.mp3
|
|
247 |
pip uninstall whisperx && pip install git+https://github.com/m-bain/whisperx.git@8540ff5985fceee764acbed94f656063d7f56540
|
248 |
|
249 |
# Transcribe the test file. All transcripts will end up in the directory of the mp3-file
|
250 |
-
whisperx knuthamsun.mp3 --model NbAiLabBeta/nb-whisper-
|
251 |
|
252 |
```
|
253 |
|
|
|
9 |
- NbAiLab/ncc_speech
|
10 |
- NbAiLab/NST
|
11 |
- NbAiLab/NPSC
|
12 |
+
base_model: openai/whisper-tiny
|
13 |
tags:
|
14 |
- audio
|
15 |
- asr
|
|
|
28 |
---
|
29 |
|
30 |
|
31 |
+
# NB-Whisper Tiny
|
32 |
|
33 |
+
Introducing the **_Norwegian NB-Whisper Tiny model_**, proudly developed by the National Library of Norway. NB-Whisper is a cutting-edge series of models designed for automatic speech recognition (ASR) and speech translation. These models are based on the work of [OpenAI's Whisper](https://arxiv.org/abs/2212.04356). Each model in the series has been trained for 250,000 steps, utilizing a diverse dataset of 8 million samples. These samples consist of aligned audio clips, each 30 seconds long, culminating in a staggering 66,000 hours of speech. For an in-depth understanding of our training methodology and dataset composition, keep an eye out for our upcoming article.
|
34 |
|
35 |
| Model Size | Parameters | Model |
|
36 |
|------------|------------|------------|
|
|
|
63 |
- **Model type:** `whisper`
|
64 |
- **Language(s) (NLP):** Norwegian, Norwegian Bokmål, Norwegian Nynorsk, English
|
65 |
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
|
66 |
+
- **Trained from model:** [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny)
|
67 |
- **Code Repository:** https://github.com/NbAiLab/nb-whisper/
|
68 |
- **Paper:** _Coming soon_
|
69 |
- **Demo:** _See Spaces on this page_
|
|
|
91 |
from transformers import pipeline
|
92 |
|
93 |
# Load the model
|
94 |
+
asr = pipeline("automatic-speech-recognition", "NbAiLabBeta/nb-whisper-tiny")
|
95 |
|
96 |
#transcribe
|
97 |
asr("king.mp3", generate_kwargs={'task': 'transcribe', 'language': 'no'})
|
|
|
220 |
$ ffmpeg -i king.mp3 -ar 16000 -ac 1 -c:a pcm_s16le king.wav
|
221 |
|
222 |
# Lets download the two ggml-files from this site
|
223 |
+
wget -N https://huggingface.co/NbAiLab/nb-whisper-tiny/resolve/main/ggml-model.bin -O models/nb-tiny-ggml-model.bin
|
224 |
+
wget -N https://huggingface.co/NbAiLab/nb-whisper-tiny/resolve/main/ggml-model-q5_0.bin -O models/nb-tiny-ggml-model-q5_0.bin
|
225 |
|
226 |
# And run it with the f16 default model
|
227 |
+
$ ./main -l no -m models/nb-tiny-ggml-model.bin king.wav
|
228 |
|
229 |
# Or the quantized version
|
230 |
+
$ ./main -l no -m models/nb-tiny-ggml-model-q5_0.bin king.wav
|
231 |
```
|
232 |
|
233 |
### WhisperX and Speaker Diarization
|
|
|
247 |
pip uninstall whisperx && pip install git+https://github.com/m-bain/whisperx.git@8540ff5985fceee764acbed94f656063d7f56540
|
248 |
|
249 |
# Transcribe the test file. All transcripts will end up in the directory of the mp3-file
|
250 |
+
whisperx knuthamsun.mp3 --model NbAiLabBeta/nb-whisper-tiny --language no --diarize
|
251 |
|
252 |
```
|
253 |
|