T5-Small-Sinhala-Sumarization-test3

This model is a fine-tuned version of Malmika/T5-Small-Sinhala-Sumarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0304
  • Rouge1: 0.1355
  • Rouge2: 0.0618
  • Rougel: 0.1354
  • Rougelsum: 0.1356
  • Gen Len: 17.8198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.0959 1.0 4333 0.0560 0.1357 0.062 0.1357 0.1358 17.8575
0.0531 2.0 8666 0.0367 0.1355 0.0619 0.1355 0.1357 17.8214
0.0406 3.0 12999 0.0350 0.1355 0.0619 0.1355 0.1357 17.8213
0.0342 4.0 17332 0.0328 0.1355 0.0618 0.1354 0.1356 17.8198
0.0323 5.0 21665 0.0304 0.1355 0.0618 0.1354 0.1356 17.8198

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
93
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Navanjana/Sinhala-Sumarization

Base model

google-t5/t5-small
Finetuned
(1)
this model