|
# PromptDiffusion Pipeline |
|
|
|
From the project [page](https://zhendong-wang.github.io/prompt-diffusion.github.io/) |
|
|
|
"With a prompt consisting of a task-specific example pair of images and text guidance, and a new query image, Prompt Diffusion can comprehend the desired task and generate the corresponding output image on both seen (trained) and unseen (new) task types." |
|
|
|
For any usage questions, please refer to the [paper](https://arxiv.org/abs/2305.01115). |
|
|
|
Prepare models by converting them from the [checkpoint](https://huggingface.co/zhendongw/prompt-diffusion) |
|
|
|
To convert the controlnet, use cldm_v15.yaml from the [repository](https://github.com/Zhendong-Wang/Prompt-Diffusion/tree/main/models/): |
|
|
|
```bash |
|
python convert_original_promptdiffusion_to_diffusers.py --checkpoint_path path-to-network-step04999.ckpt --original_config_file path-to-cldm_v15.yaml --dump_path path-to-output-directory |
|
``` |
|
|
|
To learn about how to convert the fine-tuned stable diffusion model, see the [Load different Stable Diffusion formats guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/other-formats). |
|
|
|
|
|
```py |
|
import torch |
|
from diffusers import UniPCMultistepScheduler |
|
from diffusers.utils import load_image |
|
from promptdiffusioncontrolnet import PromptDiffusionControlNetModel |
|
from pipeline_prompt_diffusion import PromptDiffusionPipeline |
|
|
|
|
|
from PIL import ImageOps |
|
|
|
image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true")) |
|
|
|
image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true") |
|
query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true")) |
|
|
|
# load prompt diffusion controlnet and prompt diffusion |
|
|
|
controlnet = PromptDiffusionControlNetModel.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16) |
|
model_id = "path-to-model" |
|
pipe = PromptDiffusionPipeline.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="base", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16") |
|
|
|
# speed up diffusion process with faster scheduler and memory optimization |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
# remove following line if xformers is not installed |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.enable_model_cpu_offload() |
|
# generate image |
|
generator = torch.manual_seed(0) |
|
image = pipe("a tortoise", num_inference_steps=20, generator=generator, image_pair=[image_a,image_b], image=query).images[0] |
|
``` |
|
|