|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
T5EncoderModel, |
|
T5Tokenizer, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderOobleck, |
|
CosineDPMSolverMultistepScheduler, |
|
StableAudioDiTModel, |
|
StableAudioPipeline, |
|
StableAudioProjectionModel, |
|
) |
|
from diffusers.utils import is_xformers_available |
|
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableAudioPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"audio_end_in_s", |
|
"audio_start_in_s", |
|
"guidance_scale", |
|
"negative_prompt", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"initial_audio_waveforms", |
|
] |
|
) |
|
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"num_waveforms_per_prompt", |
|
"generator", |
|
"latents", |
|
"output_type", |
|
"return_dict", |
|
"callback", |
|
"callback_steps", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = StableAudioDiTModel( |
|
sample_size=4, |
|
in_channels=3, |
|
num_layers=2, |
|
attention_head_dim=4, |
|
num_key_value_attention_heads=2, |
|
out_channels=3, |
|
cross_attention_dim=4, |
|
time_proj_dim=8, |
|
global_states_input_dim=8, |
|
cross_attention_input_dim=4, |
|
) |
|
scheduler = CosineDPMSolverMultistepScheduler( |
|
solver_order=2, |
|
prediction_type="v_prediction", |
|
sigma_data=1.0, |
|
sigma_schedule="exponential", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderOobleck( |
|
encoder_hidden_size=6, |
|
downsampling_ratios=[1, 2], |
|
decoder_channels=3, |
|
decoder_input_channels=3, |
|
audio_channels=2, |
|
channel_multiples=[2, 4], |
|
sampling_rate=4, |
|
) |
|
torch.manual_seed(0) |
|
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration" |
|
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id) |
|
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25) |
|
|
|
torch.manual_seed(0) |
|
projection_model = StableAudioProjectionModel( |
|
text_encoder_dim=text_encoder.config.d_model, |
|
conditioning_dim=4, |
|
min_value=0, |
|
max_value=32, |
|
) |
|
|
|
components = { |
|
"transformer": transformer, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"projection_model": projection_model, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
} |
|
return inputs |
|
|
|
def test_save_load_local(self): |
|
|
|
super().test_save_load_local(expected_max_difference=7e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
|
|
super().test_save_load_optional_components(expected_max_difference=7e-3) |
|
|
|
def test_stable_audio_ddim(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = stable_audio_pipe(**inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 2 |
|
assert audio.shape == (2, 7) |
|
|
|
def test_stable_audio_without_prompts(self): |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = stable_audio_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = stable_audio_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=stable_audio_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).to(torch_device) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
|
|
prompt_embeds = stable_audio_pipe.text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
inputs["attention_mask"] = attention_mask |
|
|
|
|
|
output = stable_audio_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert (audio_1 - audio_2).abs().max() < 1e-2 |
|
|
|
def test_stable_audio_negative_without_prompts(self): |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
negative_prompt = 3 * ["this is a negative prompt"] |
|
inputs["negative_prompt"] = negative_prompt |
|
inputs["prompt"] = 3 * [inputs["prompt"]] |
|
|
|
|
|
output = stable_audio_pipe(**inputs) |
|
audio_1 = output.audios[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 3 * [inputs.pop("prompt")] |
|
|
|
text_inputs = stable_audio_pipe.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=stable_audio_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).to(torch_device) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
|
|
prompt_embeds = stable_audio_pipe.text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
)[0] |
|
|
|
inputs["prompt_embeds"] = prompt_embeds |
|
inputs["attention_mask"] = attention_mask |
|
|
|
negative_text_inputs = stable_audio_pipe.tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=stable_audio_pipe.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).to(torch_device) |
|
negative_text_input_ids = negative_text_inputs.input_ids |
|
negative_attention_mask = negative_text_inputs.attention_mask |
|
|
|
negative_prompt_embeds = stable_audio_pipe.text_encoder( |
|
negative_text_input_ids, |
|
attention_mask=negative_attention_mask, |
|
)[0] |
|
|
|
inputs["negative_prompt_embeds"] = negative_prompt_embeds |
|
inputs["negative_attention_mask"] = negative_attention_mask |
|
|
|
|
|
output = stable_audio_pipe(**inputs) |
|
audio_2 = output.audios[0] |
|
|
|
assert (audio_1 - audio_2).abs().max() < 1e-2 |
|
|
|
def test_stable_audio_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "egg cracking" |
|
output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 2 |
|
assert audio.shape == (2, 7) |
|
|
|
def test_stable_audio_num_waveforms_per_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A hammer hitting a wooden surface" |
|
|
|
|
|
audios = stable_audio_pipe(prompt, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (1, 2, 7) |
|
|
|
|
|
batch_size = 2 |
|
audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios |
|
|
|
assert audios.shape == (batch_size, 2, 7) |
|
|
|
|
|
num_waveforms_per_prompt = 2 |
|
audios = stable_audio_pipe( |
|
prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt |
|
).audios |
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 2, 7) |
|
|
|
|
|
batch_size = 2 |
|
audios = stable_audio_pipe( |
|
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt |
|
).audios |
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) |
|
|
|
def test_stable_audio_audio_end_in_s(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = stable_audio_pipe(audio_end_in_s=1.5, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 2 |
|
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5 |
|
|
|
output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs) |
|
audio = output.audios[0] |
|
|
|
assert audio.ndim == 2 |
|
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=5e-4) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) |
|
|
|
def test_stable_audio_input_waveform(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
stable_audio_pipe = StableAudioPipeline(**components) |
|
stable_audio_pipe = stable_audio_pipe.to(device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "A hammer hitting a wooden surface" |
|
|
|
initial_audio_waveforms = torch.ones((1, 5)) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
audios = stable_audio_pipe( |
|
prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms |
|
).audios |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
audios = stable_audio_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
initial_audio_waveforms=initial_audio_waveforms, |
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1, |
|
).audios |
|
|
|
audios = stable_audio_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
initial_audio_waveforms=initial_audio_waveforms, |
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, |
|
).audios |
|
assert audios.shape == (1, 2, 7) |
|
|
|
|
|
num_waveforms_per_prompt = 2 |
|
audios = stable_audio_pipe( |
|
prompt, |
|
num_inference_steps=2, |
|
num_waveforms_per_prompt=num_waveforms_per_prompt, |
|
initial_audio_waveforms=initial_audio_waveforms, |
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, |
|
).audios |
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 2, 7) |
|
|
|
|
|
batch_size = 2 |
|
initial_audio_waveforms = torch.ones((batch_size, 2, 5)) |
|
audios = stable_audio_pipe( |
|
[prompt] * batch_size, |
|
num_inference_steps=2, |
|
num_waveforms_per_prompt=num_waveforms_per_prompt, |
|
initial_audio_waveforms=initial_audio_waveforms, |
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, |
|
).audios |
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) |
|
|
|
@unittest.skip("Not supported yet") |
|
def test_sequential_cpu_offload_forward_pass(self): |
|
pass |
|
|
|
@unittest.skip("Not supported yet") |
|
def test_sequential_offload_forward_pass_twice(self): |
|
pass |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableAudioPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): |
|
generator = torch.Generator(device=generator_device).manual_seed(seed) |
|
latents = np.random.RandomState(seed).standard_normal((1, 64, 1024)) |
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) |
|
inputs = { |
|
"prompt": "A hammer hitting a wooden surface", |
|
"latents": latents, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"audio_end_in_s": 30, |
|
"guidance_scale": 2.5, |
|
} |
|
return inputs |
|
|
|
def test_stable_audio(self): |
|
stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0") |
|
stable_audio_pipe = stable_audio_pipe.to(torch_device) |
|
stable_audio_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_inputs(torch_device) |
|
inputs["num_inference_steps"] = 25 |
|
audio = stable_audio_pipe(**inputs).audios[0] |
|
|
|
assert audio.ndim == 2 |
|
assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate)) |
|
|
|
audio_slice = audio[0, 447590:447600] |
|
|
|
expected_slice = np.array( |
|
[-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060] |
|
) |
|
|
|
max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max() |
|
assert max_diff < 1.5e-3 |
|
|