# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import ( T5EncoderModel, T5Tokenizer, ) from diffusers import ( AutoencoderOobleck, CosineDPMSolverMultistepScheduler, StableAudioDiTModel, StableAudioPipeline, StableAudioProjectionModel, ) from diffusers.utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = StableAudioPipeline params = frozenset( [ "prompt", "audio_end_in_s", "audio_start_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "initial_audio_waveforms", ] ) batch_params = TEXT_TO_AUDIO_BATCH_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def get_dummy_components(self): torch.manual_seed(0) transformer = StableAudioDiTModel( sample_size=4, in_channels=3, num_layers=2, attention_head_dim=4, num_key_value_attention_heads=2, out_channels=3, cross_attention_dim=4, time_proj_dim=8, global_states_input_dim=8, cross_attention_input_dim=4, ) scheduler = CosineDPMSolverMultistepScheduler( solver_order=2, prediction_type="v_prediction", sigma_data=1.0, sigma_schedule="exponential", ) torch.manual_seed(0) vae = AutoencoderOobleck( encoder_hidden_size=6, downsampling_ratios=[1, 2], decoder_channels=3, decoder_input_channels=3, audio_channels=2, channel_multiples=[2, 4], sampling_rate=4, ) torch.manual_seed(0) t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration" text_encoder = T5EncoderModel.from_pretrained(t5_repo_id) tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25) torch.manual_seed(0) projection_model = StableAudioProjectionModel( text_encoder_dim=text_encoder.config.d_model, conditioning_dim=4, min_value=0, max_value=32, ) components = { "transformer": transformer, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "projection_model": projection_model, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def test_save_load_local(self): # increase tolerance from 1e-4 -> 7e-3 to account for large composite model super().test_save_load_local(expected_max_difference=7e-3) def test_save_load_optional_components(self): # increase tolerance from 1e-4 -> 7e-3 to account for large composite model super().test_save_load_optional_components(expected_max_difference=7e-3) def test_stable_audio_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = stable_audio_pipe(**inputs) audio = output.audios[0] assert audio.ndim == 2 assert audio.shape == (2, 7) def test_stable_audio_without_prompts(self): components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = stable_audio_pipe(**inputs) audio_1 = output.audios[0] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = stable_audio_pipe.tokenizer( prompt, padding="max_length", max_length=stable_audio_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).to(torch_device) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask prompt_embeds = stable_audio_pipe.text_encoder( text_input_ids, attention_mask=attention_mask, )[0] inputs["prompt_embeds"] = prompt_embeds inputs["attention_mask"] = attention_mask # forward output = stable_audio_pipe(**inputs) audio_2 = output.audios[0] assert (audio_1 - audio_2).abs().max() < 1e-2 def test_stable_audio_negative_without_prompts(self): components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] # forward output = stable_audio_pipe(**inputs) audio_1 = output.audios[0] inputs = self.get_dummy_inputs(torch_device) prompt = 3 * [inputs.pop("prompt")] text_inputs = stable_audio_pipe.tokenizer( prompt, padding="max_length", max_length=stable_audio_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).to(torch_device) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask prompt_embeds = stable_audio_pipe.text_encoder( text_input_ids, attention_mask=attention_mask, )[0] inputs["prompt_embeds"] = prompt_embeds inputs["attention_mask"] = attention_mask negative_text_inputs = stable_audio_pipe.tokenizer( negative_prompt, padding="max_length", max_length=stable_audio_pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).to(torch_device) negative_text_input_ids = negative_text_inputs.input_ids negative_attention_mask = negative_text_inputs.attention_mask negative_prompt_embeds = stable_audio_pipe.text_encoder( negative_text_input_ids, attention_mask=negative_attention_mask, )[0] inputs["negative_prompt_embeds"] = negative_prompt_embeds inputs["negative_attention_mask"] = negative_attention_mask # forward output = stable_audio_pipe(**inputs) audio_2 = output.audios[0] assert (audio_1 - audio_2).abs().max() < 1e-2 def test_stable_audio_negative_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) negative_prompt = "egg cracking" output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt) audio = output.audios[0] assert audio.ndim == 2 assert audio.shape == (2, 7) def test_stable_audio_num_waveforms_per_prompt(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(device) stable_audio_pipe.set_progress_bar_config(disable=None) prompt = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) audios = stable_audio_pipe(prompt, num_inference_steps=2).audios assert audios.shape == (1, 2, 7) # test num_waveforms_per_prompt=1 (default) for batch of prompts batch_size = 2 audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios assert audios.shape == (batch_size, 2, 7) # test num_waveforms_per_prompt for single prompt num_waveforms_per_prompt = 2 audios = stable_audio_pipe( prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt ).audios assert audios.shape == (num_waveforms_per_prompt, 2, 7) # test num_waveforms_per_prompt for batch of prompts batch_size = 2 audios = stable_audio_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) def test_stable_audio_audio_end_in_s(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) output = stable_audio_pipe(audio_end_in_s=1.5, **inputs) audio = output.audios[0] assert audio.ndim == 2 assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5 output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs) audio = output.audios[0] assert audio.ndim == 2 assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0 def test_attention_slicing_forward_pass(self): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=5e-4) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) def test_stable_audio_input_waveform(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() stable_audio_pipe = StableAudioPipeline(**components) stable_audio_pipe = stable_audio_pipe.to(device) stable_audio_pipe.set_progress_bar_config(disable=None) prompt = "A hammer hitting a wooden surface" initial_audio_waveforms = torch.ones((1, 5)) # test raises error when no sampling rate with self.assertRaises(ValueError): audios = stable_audio_pipe( prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms ).audios # test raises error when wrong sampling rate with self.assertRaises(ValueError): audios = stable_audio_pipe( prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms, initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1, ).audios audios = stable_audio_pipe( prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms, initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, ).audios assert audios.shape == (1, 2, 7) # test works with num_waveforms_per_prompt num_waveforms_per_prompt = 2 audios = stable_audio_pipe( prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt, initial_audio_waveforms=initial_audio_waveforms, initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, ).audios assert audios.shape == (num_waveforms_per_prompt, 2, 7) # test num_waveforms_per_prompt for batch of prompts and input audio (two channels) batch_size = 2 initial_audio_waveforms = torch.ones((batch_size, 2, 5)) audios = stable_audio_pipe( [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt, initial_audio_waveforms=initial_audio_waveforms, initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate, ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7) @unittest.skip("Not supported yet") def test_sequential_cpu_offload_forward_pass(self): pass @unittest.skip("Not supported yet") def test_sequential_offload_forward_pass_twice(self): pass @nightly @require_torch_gpu class StableAudioPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) latents = np.random.RandomState(seed).standard_normal((1, 64, 1024)) latents = torch.from_numpy(latents).to(device=device, dtype=dtype) inputs = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "audio_end_in_s": 30, "guidance_scale": 2.5, } return inputs def test_stable_audio(self): stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0") stable_audio_pipe = stable_audio_pipe.to(torch_device) stable_audio_pipe.set_progress_bar_config(disable=None) inputs = self.get_inputs(torch_device) inputs["num_inference_steps"] = 25 audio = stable_audio_pipe(**inputs).audios[0] assert audio.ndim == 2 assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate)) # check the portion of the generated audio with the largest dynamic range (reduces flakiness) audio_slice = audio[0, 447590:447600] # fmt: off expected_slice = np.array( [-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060] ) # fmt: one max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max() assert max_diff < 1.5e-3