working / diffusers /tests /pipelines /controlnet_sd3 /test_controlnet_inpaint_sd3.py
NadaGh's picture
End of training
dde5d93 verified
raw
history blame
6.7 kB
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
SD3Transformer2DModel,
StableDiffusion3ControlNetInpaintingPipeline,
)
from diffusers.models import SD3ControlNetModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = StableDiffusion3ControlNetInpaintingPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = SD3Transformer2DModel(
sample_size=32,
patch_size=1,
in_channels=8,
num_layers=4,
attention_head_dim=8,
num_attention_heads=4,
joint_attention_dim=32,
caption_projection_dim=32,
pooled_projection_dim=64,
out_channels=8,
)
torch.manual_seed(0)
controlnet = SD3ControlNetModel(
sample_size=32,
patch_size=1,
in_channels=8,
num_layers=1,
attention_head_dim=8,
num_attention_heads=4,
joint_attention_dim=32,
caption_projection_dim=32,
pooled_projection_dim=64,
out_channels=8,
extra_conditioning_channels=1,
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=8,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"text_encoder_3": text_encoder_3,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"tokenizer_3": tokenizer_3,
"transformer": transformer,
"vae": vae,
"controlnet": controlnet,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
control_image = randn_tensor(
(1, 3, 32, 32),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
control_mask = randn_tensor(
(1, 1, 32, 32),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
controlnet_conditioning_scale = 0.95
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.0,
"output_type": "np",
"control_image": control_image,
"control_mask": control_mask,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
return inputs
def test_controlnet_inpaint_sd3(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusion3ControlNetInpaintingPipeline(**components)
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[0.51708984, 0.7421875, 0.4580078, 0.6435547, 0.65625, 0.43603516, 0.5151367, 0.65722656, 0.60839844]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
def test_xformers_attention_forwardGenerator_pass(self):
pass