|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
SD3Transformer2DModel,
|
|
StableDiffusion3ControlNetInpaintingPipeline,
|
|
)
|
|
from diffusers.models import SD3ControlNetModel
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
|
pipeline_class = StableDiffusion3ControlNetInpaintingPipeline
|
|
params = frozenset(
|
|
[
|
|
"prompt",
|
|
"height",
|
|
"width",
|
|
"guidance_scale",
|
|
"negative_prompt",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
]
|
|
)
|
|
batch_params = frozenset(["prompt", "negative_prompt"])
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = SD3Transformer2DModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=8,
|
|
num_layers=4,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
joint_attention_dim=32,
|
|
caption_projection_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=8,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
controlnet = SD3ControlNetModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=8,
|
|
num_layers=1,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
joint_attention_dim=32,
|
|
caption_projection_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=8,
|
|
extra_conditioning_channels=1,
|
|
)
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
block_out_channels=(4,),
|
|
layers_per_block=1,
|
|
latent_channels=8,
|
|
norm_num_groups=1,
|
|
use_quant_conv=False,
|
|
use_post_quant_conv=False,
|
|
shift_factor=0.0609,
|
|
scaling_factor=1.5035,
|
|
)
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
return {
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"text_encoder_3": text_encoder_3,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"tokenizer_3": tokenizer_3,
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"controlnet": controlnet,
|
|
}
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
control_image = randn_tensor(
|
|
(1, 3, 32, 32),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
control_mask = randn_tensor(
|
|
(1, 1, 32, 32),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
controlnet_conditioning_scale = 0.95
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 7.0,
|
|
"output_type": "np",
|
|
"control_image": control_image,
|
|
"control_mask": control_mask,
|
|
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_controlnet_inpaint_sd3(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusion3ControlNetInpaintingPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array(
|
|
[0.51708984, 0.7421875, 0.4580078, 0.6435547, 0.65625, 0.43603516, 0.5151367, 0.65722656, 0.60839844]
|
|
)
|
|
|
|
assert (
|
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
|
|
|
|
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
pass
|
|
|