# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3ControlNetInpaintingPipeline, ) from diffusers.models import SD3ControlNetModel from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = StableDiffusion3ControlNetInpaintingPipeline params = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) batch_params = frozenset(["prompt", "negative_prompt"]) def get_dummy_components(self): torch.manual_seed(0) transformer = SD3Transformer2DModel( sample_size=32, patch_size=1, in_channels=8, num_layers=4, attention_head_dim=8, num_attention_heads=4, joint_attention_dim=32, caption_projection_dim=32, pooled_projection_dim=64, out_channels=8, ) torch.manual_seed(0) controlnet = SD3ControlNetModel( sample_size=32, patch_size=1, in_channels=8, num_layers=1, attention_head_dim=8, num_attention_heads=4, joint_attention_dim=32, caption_projection_dim=32, pooled_projection_dim=64, out_channels=8, extra_conditioning_channels=1, ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=8, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "text_encoder_3": text_encoder_3, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "tokenizer_3": tokenizer_3, "transformer": transformer, "vae": vae, "controlnet": controlnet, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) control_image = randn_tensor( (1, 3, 32, 32), generator=generator, device=torch.device(device), dtype=torch.float16, ) control_mask = randn_tensor( (1, 1, 32, 32), generator=generator, device=torch.device(device), dtype=torch.float16, ) controlnet_conditioning_scale = 0.95 inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.0, "output_type": "np", "control_image": control_image, "control_mask": control_mask, "controlnet_conditioning_scale": controlnet_conditioning_scale, } return inputs def test_controlnet_inpaint_sd3(self): components = self.get_dummy_components() sd_pipe = StableDiffusion3ControlNetInpaintingPipeline(**components) sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array( [0.51708984, 0.7421875, 0.4580078, 0.6435547, 0.65625, 0.43603516, 0.5151367, 0.65722656, 0.60839844] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention") def test_xformers_attention_forwardGenerator_pass(self): pass