|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
FluxControlNetPipeline, |
|
FluxTransformer2DModel, |
|
) |
|
from diffusers.models import FluxControlNetModel |
|
from diffusers.utils import load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = FluxControlNetPipeline |
|
|
|
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) |
|
batch_params = frozenset(["prompt"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = FluxTransformer2DModel( |
|
patch_size=1, |
|
in_channels=16, |
|
num_layers=1, |
|
num_single_layers=1, |
|
attention_head_dim=16, |
|
num_attention_heads=2, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=32, |
|
axes_dims_rope=[4, 4, 8], |
|
) |
|
|
|
torch.manual_seed(0) |
|
controlnet = FluxControlNetModel( |
|
patch_size=1, |
|
in_channels=16, |
|
num_layers=1, |
|
num_single_layers=1, |
|
attention_head_dim=16, |
|
num_attention_heads=2, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=32, |
|
axes_dims_rope=[4, 4, 8], |
|
) |
|
|
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModel(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=4, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"transformer": transformer, |
|
"vae": vae, |
|
"controlnet": controlnet, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device="cpu").manual_seed(seed) |
|
|
|
control_image = randn_tensor( |
|
(1, 3, 32, 32), |
|
generator=generator, |
|
device=torch.device(device), |
|
dtype=torch.float16, |
|
) |
|
|
|
controlnet_conditioning_scale = 0.5 |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 3.5, |
|
"output_type": "np", |
|
"control_image": control_image, |
|
"controlnet_conditioning_scale": controlnet_conditioning_scale, |
|
} |
|
|
|
return inputs |
|
|
|
def test_controlnet_flux(self): |
|
components = self.get_dummy_components() |
|
flux_pipe = FluxControlNetPipeline(**components) |
|
flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16) |
|
flux_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = flux_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
expected_slice = np.array( |
|
[0.7348633, 0.41333008, 0.6621094, 0.5444336, 0.47607422, 0.5859375, 0.44677734, 0.4506836, 0.40454102] |
|
) |
|
|
|
assert ( |
|
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
), f"Expected: {expected_slice}, got: {image_slice.flatten()}" |
|
|
|
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class FluxControlNetPipelineSlowTests(unittest.TestCase): |
|
pipeline_class = FluxControlNetPipeline |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = FluxControlNetModel.from_pretrained( |
|
"InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16 |
|
) |
|
pipe = FluxControlNetPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16 |
|
) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "A girl in city, 25 years old, cool, futuristic" |
|
control_image = load_image( |
|
"https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" |
|
) |
|
|
|
output = pipe( |
|
prompt, |
|
control_image=control_image, |
|
controlnet_conditioning_scale=0.6, |
|
num_inference_steps=2, |
|
guidance_scale=3.5, |
|
output_type="np", |
|
generator=generator, |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (1024, 1024, 3) |
|
|
|
original_image = image[-3:, -3:, -1].flatten() |
|
|
|
expected_image = np.array( |
|
[0.33007812, 0.33984375, 0.33984375, 0.328125, 0.34179688, 0.33984375, 0.30859375, 0.3203125, 0.3203125] |
|
) |
|
|
|
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2 |
|
|