# coding=utf-8 # Copyright 2024 HuggingFace Inc and The InstantX Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlNetPipeline, FluxTransformer2DModel, ) from diffusers.models import FluxControlNetModel from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = FluxControlNetPipeline params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) batch_params = frozenset(["prompt"]) def get_dummy_components(self): torch.manual_seed(0) transformer = FluxTransformer2DModel( patch_size=1, in_channels=16, num_layers=1, num_single_layers=1, attention_head_dim=16, num_attention_heads=2, joint_attention_dim=32, pooled_projection_dim=32, axes_dims_rope=[4, 4, 8], ) torch.manual_seed(0) controlnet = FluxControlNetModel( patch_size=1, in_channels=16, num_layers=1, num_single_layers=1, attention_head_dim=16, num_attention_heads=2, joint_attention_dim=32, pooled_projection_dim=32, axes_dims_rope=[4, 4, 8], ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModel(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=4, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "transformer": transformer, "vae": vae, "controlnet": controlnet, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) control_image = randn_tensor( (1, 3, 32, 32), generator=generator, device=torch.device(device), dtype=torch.float16, ) controlnet_conditioning_scale = 0.5 inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 3.5, "output_type": "np", "control_image": control_image, "controlnet_conditioning_scale": controlnet_conditioning_scale, } return inputs def test_controlnet_flux(self): components = self.get_dummy_components() flux_pipe = FluxControlNetPipeline(**components) flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16) flux_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) output = flux_pipe(**inputs) image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array( [0.7348633, 0.41333008, 0.6621094, 0.5444336, 0.47607422, 0.5859375, 0.44677734, 0.4506836, 0.40454102] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f"Expected: {expected_slice}, got: {image_slice.flatten()}" @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention") def test_xformers_attention_forwardGenerator_pass(self): pass @slow @require_torch_gpu class FluxControlNetPipelineSlowTests(unittest.TestCase): pipeline_class = FluxControlNetPipeline def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_canny(self): controlnet = FluxControlNetModel.from_pretrained( "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16 ) pipe = FluxControlNetPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16 ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "A girl in city, 25 years old, cool, futuristic" control_image = load_image( "https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg" ) output = pipe( prompt, control_image=control_image, controlnet_conditioning_scale=0.6, num_inference_steps=2, guidance_scale=3.5, output_type="np", generator=generator, ) image = output.images[0] assert image.shape == (1024, 1024, 3) original_image = image[-3:, -3:, -1].flatten() expected_image = np.array( [0.33007812, 0.33984375, 0.33984375, 0.328125, 0.34179688, 0.33984375, 0.30859375, 0.3203125, 0.3203125] ) assert np.abs(original_image.flatten() - expected_image).max() < 1e-2