|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
numpy_cosine_similarity_distance, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import ( |
|
PipelineTesterMixin, |
|
check_qkv_fusion_matches_attn_procs_length, |
|
check_qkv_fusion_processors_exist, |
|
to_np, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = CogVideoXPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"latents", |
|
"return_dict", |
|
"callback_on_step_end", |
|
"callback_on_step_end_tensor_inputs", |
|
] |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = CogVideoXTransformer3DModel( |
|
|
|
|
|
|
|
num_attention_heads=4, |
|
attention_head_dim=8, |
|
in_channels=4, |
|
out_channels=4, |
|
time_embed_dim=2, |
|
text_embed_dim=32, |
|
num_layers=1, |
|
sample_width=16, |
|
sample_height=16, |
|
sample_frames=9, |
|
patch_size=2, |
|
temporal_compression_ratio=4, |
|
max_text_seq_length=16, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKLCogVideoX( |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=( |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
), |
|
up_block_types=( |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
), |
|
block_out_channels=(8, 8, 8, 8), |
|
latent_channels=4, |
|
layers_per_block=1, |
|
norm_num_groups=2, |
|
temporal_compression_ratio=4, |
|
) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler() |
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
components = { |
|
"transformer": transformer, |
|
"vae": vae, |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "dance monkey", |
|
"negative_prompt": "", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
|
|
"height": 16, |
|
"width": 16, |
|
"num_frames": 8, |
|
"max_sequence_length": 16, |
|
"output_type": "pt", |
|
} |
|
return inputs |
|
|
|
def test_inference(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
video = pipe(**inputs).frames |
|
generated_video = video[0] |
|
|
|
self.assertEqual(generated_video.shape, (8, 3, 16, 16)) |
|
expected_video = torch.randn(8, 3, 16, 16) |
|
max_diff = np.abs(generated_video - expected_video).max() |
|
self.assertLessEqual(max_diff, 1e10) |
|
|
|
def test_callback_inputs(self): |
|
sig = inspect.signature(self.pipeline_class.__call__) |
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters |
|
has_callback_step_end = "callback_on_step_end" in sig.parameters |
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
self.assertTrue( |
|
hasattr(pipe, "_callback_tensor_inputs"), |
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", |
|
) |
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs): |
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs): |
|
for tensor_name in pipe._callback_tensor_inputs: |
|
assert tensor_name in callback_kwargs |
|
|
|
|
|
for tensor_name, tensor_value in callback_kwargs.items(): |
|
|
|
assert tensor_name in pipe._callback_tensor_inputs |
|
|
|
return callback_kwargs |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_subset |
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] |
|
output = pipe(**inputs)[0] |
|
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_all |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): |
|
is_last = i == (pipe.num_timesteps - 1) |
|
if is_last: |
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) |
|
return callback_kwargs |
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor |
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs |
|
output = pipe(**inputs)[0] |
|
assert output.abs().sum() < 1e10 |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) |
|
|
|
def test_attention_slicing_forward_pass( |
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 |
|
): |
|
if not self.test_attention_slicing: |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
for component in pipe.components.values(): |
|
if hasattr(component, "set_default_attn_processor"): |
|
component.set_default_attn_processor() |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator_device = "cpu" |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_without_slicing = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=1) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing1 = pipe(**inputs)[0] |
|
|
|
pipe.enable_attention_slicing(slice_size=2) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
output_with_slicing2 = pipe(**inputs)[0] |
|
|
|
if test_max_difference: |
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() |
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() |
|
self.assertLess( |
|
max(max_diff1, max_diff2), |
|
expected_max_diff, |
|
"Attention slicing should not affect the inference results", |
|
) |
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.2): |
|
generator_device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe.to("cpu") |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(generator_device) |
|
inputs["height"] = inputs["width"] = 128 |
|
output_without_tiling = pipe(**inputs)[0] |
|
|
|
|
|
pipe.vae.enable_tiling( |
|
tile_sample_min_height=96, |
|
tile_sample_min_width=96, |
|
tile_overlap_factor_height=1 / 12, |
|
tile_overlap_factor_width=1 / 12, |
|
) |
|
inputs = self.get_dummy_inputs(generator_device) |
|
inputs["height"] = inputs["width"] = 128 |
|
output_with_tiling = pipe(**inputs)[0] |
|
|
|
self.assertLess( |
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), |
|
expected_diff_max, |
|
"VAE tiling should not affect the inference results", |
|
) |
|
|
|
@unittest.skip("xformers attention processor does not exist for CogVideoX") |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
pass |
|
|
|
def test_fused_qkv_projections(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
frames = pipe(**inputs).frames |
|
original_image_slice = frames[0, -2:, -1, -3:, -3:] |
|
|
|
pipe.fuse_qkv_projections() |
|
assert check_qkv_fusion_processors_exist( |
|
pipe.transformer |
|
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." |
|
assert check_qkv_fusion_matches_attn_procs_length( |
|
pipe.transformer, pipe.transformer.original_attn_processors |
|
), "Something wrong with the attention processors concerning the fused QKV projections." |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
frames = pipe(**inputs).frames |
|
image_slice_fused = frames[0, -2:, -1, -3:, -3:] |
|
|
|
pipe.transformer.unfuse_qkv_projections() |
|
inputs = self.get_dummy_inputs(device) |
|
frames = pipe(**inputs).frames |
|
image_slice_disabled = frames[0, -2:, -1, -3:, -3:] |
|
|
|
assert np.allclose( |
|
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 |
|
), "Fusion of QKV projections shouldn't affect the outputs." |
|
assert np.allclose( |
|
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 |
|
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." |
|
assert np.allclose( |
|
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 |
|
), "Original outputs should match when fused QKV projections are disabled." |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class CogVideoXPipelineIntegrationTests(unittest.TestCase): |
|
prompt = "A painting of a squirrel eating a burger." |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_cogvideox(self): |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
|
|
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
prompt = self.prompt |
|
|
|
videos = pipe( |
|
prompt=prompt, |
|
height=480, |
|
width=720, |
|
num_frames=16, |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="pt", |
|
).frames |
|
|
|
video = videos[0] |
|
expected_video = torch.randn(1, 16, 480, 720, 3).numpy() |
|
|
|
max_diff = numpy_cosine_similarity_distance(video, expected_video) |
|
assert max_diff < 1e-3, f"Max diff is too high. got {video}" |
|
|