# Copyright 2024 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import inspect import unittest import numpy as np import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler from diffusers.utils.testing_utils import ( enable_full_determinism, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineTesterMixin, check_qkv_fusion_matches_attn_procs_length, check_qkv_fusion_processors_exist, to_np, ) enable_full_determinism() class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = CogVideoXPipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) def get_dummy_components(self): torch.manual_seed(0) transformer = CogVideoXTransformer3DModel( # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings # But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel # to be 32. The internal dim is product of num_attention_heads and attention_head_dim num_attention_heads=4, attention_head_dim=8, in_channels=4, out_channels=4, time_embed_dim=2, text_embed_dim=32, # Must match with tiny-random-t5 num_layers=1, sample_width=16, # latent width: 2 -> final width: 16 sample_height=16, # latent height: 2 -> final height: 16 sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9 patch_size=2, temporal_compression_ratio=4, max_text_seq_length=16, ) torch.manual_seed(0) vae = AutoencoderKLCogVideoX( in_channels=3, out_channels=3, down_block_types=( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), up_block_types=( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels=(8, 8, 8, 8), latent_channels=4, layers_per_block=1, norm_num_groups=2, temporal_compression_ratio=4, ) torch.manual_seed(0) scheduler = DDIMScheduler() text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "dance monkey", "negative_prompt": "", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, # Cannot reduce because convolution kernel becomes bigger than sample "height": 16, "width": 16, "num_frames": 8, "max_sequence_length": 16, "output_type": "pt", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames generated_video = video[0] self.assertEqual(generated_video.shape, (8, 3, 16, 16)) expected_video = torch.randn(8, 3, 16, 16) max_diff = np.abs(generated_video - expected_video).max() self.assertLessEqual(max_diff, 1e10) def test_callback_inputs(self): sig = inspect.signature(self.pipeline_class.__call__) has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters has_callback_step_end = "callback_on_step_end" in sig.parameters if not (has_callback_tensor_inputs and has_callback_step_end): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) self.assertTrue( hasattr(pipe, "_callback_tensor_inputs"), f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", ) def callback_inputs_subset(pipe, i, t, callback_kwargs): # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs def callback_inputs_all(pipe, i, t, callback_kwargs): for tensor_name in pipe._callback_tensor_inputs: assert tensor_name in callback_kwargs # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs inputs = self.get_dummy_inputs(torch_device) # Test passing in a subset inputs["callback_on_step_end"] = callback_inputs_subset inputs["callback_on_step_end_tensor_inputs"] = ["latents"] output = pipe(**inputs)[0] # Test passing in a everything inputs["callback_on_step_end"] = callback_inputs_all inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): is_last = i == (pipe.num_timesteps - 1) if is_last: callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) return callback_kwargs inputs["callback_on_step_end"] = callback_inputs_change_tensor inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] assert output.abs().sum() < 1e10 def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) def test_attention_slicing_forward_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 ): if not self.test_attention_slicing: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) for component in pipe.components.values(): if hasattr(component, "set_default_attn_processor"): component.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) output_without_slicing = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=1) inputs = self.get_dummy_inputs(generator_device) output_with_slicing1 = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=2) inputs = self.get_dummy_inputs(generator_device) output_with_slicing2 = pipe(**inputs)[0] if test_max_difference: max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() self.assertLess( max(max_diff1, max_diff2), expected_max_diff, "Attention slicing should not affect the inference results", ) def test_vae_tiling(self, expected_diff_max: float = 0.2): generator_device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to("cpu") pipe.set_progress_bar_config(disable=None) # Without tiling inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_without_tiling = pipe(**inputs)[0] # With tiling pipe.vae.enable_tiling( tile_sample_min_height=96, tile_sample_min_width=96, tile_overlap_factor_height=1 / 12, tile_overlap_factor_width=1 / 12, ) inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_with_tiling = pipe(**inputs)[0] self.assertLess( (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), expected_diff_max, "VAE tiling should not affect the inference results", ) @unittest.skip("xformers attention processor does not exist for CogVideoX") def test_xformers_attention_forwardGenerator_pass(self): pass def test_fused_qkv_projections(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames # [B, F, C, H, W] original_image_slice = frames[0, -2:, -1, -3:, -3:] pipe.fuse_qkv_projections() assert check_qkv_fusion_processors_exist( pipe.transformer ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." assert check_qkv_fusion_matches_attn_procs_length( pipe.transformer, pipe.transformer.original_attn_processors ), "Something wrong with the attention processors concerning the fused QKV projections." inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames image_slice_fused = frames[0, -2:, -1, -3:, -3:] pipe.transformer.unfuse_qkv_projections() inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames image_slice_disabled = frames[0, -2:, -1, -3:, -3:] assert np.allclose( original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 ), "Fusion of QKV projections shouldn't affect the outputs." assert np.allclose( image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." assert np.allclose( original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 ), "Original outputs should match when fused QKV projections are disabled." @slow @require_torch_gpu class CogVideoXPipelineIntegrationTests(unittest.TestCase): prompt = "A painting of a squirrel eating a burger." def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_cogvideox(self): generator = torch.Generator("cpu").manual_seed(0) pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt = self.prompt videos = pipe( prompt=prompt, height=480, width=720, num_frames=16, generator=generator, num_inference_steps=2, output_type="pt", ).frames video = videos[0] expected_video = torch.randn(1, 16, 480, 720, 3).numpy() max_diff = numpy_cosine_similarity_distance(video, expected_video) assert max_diff < 1e-3, f"Max diff is too high. got {video}"